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Vascular ageing biomarkers have been found to be predictive of cardiovascular risk independently of classical risk factors, yet are not
widely used in clinical practice. In this review, we present two basic approaches for using machine learning (ML) to assess vascular age:
parameter estimation and risk classification. We then summarize their role in developing new techniques to assess vascular ageing quickly
and accurately. We discuss the methods used to validate ML-based markers, the evidence for their clinical utility, and key directions for fu-
ture research. The review is complemented by case studies of the use of ML in vascular age assessment which can be replicated using
freely available data and code.
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Introduction

Age is a key risk factor for hypertension and cardiovascular disease
(CVD).1 A major consequence of ageing is the progressive stiffening
of the major arteries, particularly the proximal aorta. In an optimally
functioning cardiovascular system, the elastic properties of the large
arteries ensure that the pulsatile pressure and flow generated by left
ventricular ejection is dampened, minimizing potential harm to the
microvasculature. However, the cushioning (elastic) properties of
the large arteries diminish with age giving rise to arterial stiffening.
While age-related arterial damage occurs predominantly in later life,
there is wide variability between individuals, with some displaying
early vascular ageing.2 This has led to the concept that vascular age,
as opposed to chronological age, may be better related to the prog-
nosis of CVD.3

Arterial stiffness is a promising marker of vascular ageing and many
studies have shown that the stiffness of the large arteries is related to
elevated CVD risk in adults, independently of traditional cardiovascu-
lar risk factors.4 Given the world’s ageing population, effective moni-
toring of vascular ageing is increasingly important, and clinical
biomarkers that can accurately describe the status of the vasculature
are highly desirable.5 A commonly used index of arterial stiffness is
carotid-femoral pulse wave velocity (cfPWV), the speed at which the
pressure wave travels through the arteries, typically measured via
applanation tonometry.6 Central (aortic) blood pressure (CBP), the
pressure the heart, and central organs are exposed to, is also indica-
tive of vascular ageing and is related to cardiovascular events and
mortality7,8 independently of brachial blood pressure (BP).9 Several
other indices can also be used to assess vascular age including cellular
biomarkers, coronary artery calcium scores, endothelium function,
carotid intima-media thickness, and atherosclerosis indices. This
review focuses on arterial stiffness biomarkers such as pulse wave
velocity (PWV), given the wealth of evidence that they can capture
age-related arteriosclerotic changes.

Machine learning (ML) provides systems or models with the cap-
acity to learn automatically from data without explicit human input.
Recent technological advances have spurred an abundance of ‘big
data’ in healthcare:10 data of ‘such a high volume, velocity (i.e. rate of
collection), and variety (i.e. different types of variables) to require
specific technology and analytical methods for its transformation into
value’.11 Machine learning algorithms, including deep learning algo-
rithms (a subset of ML), are being used increasingly due to their flex-
ible nature in evaluating large datasets without the need for specified
assumptions. Since the distinction between ML and statistical model-
ling is not clear-cut,12 this review incorporates both ML and statistical
modelling techniques. ML is now being used to develop new methods
for assessing vascular age which may be more accurate or simpler
than existing methods. For example, multiple linear regression has
been used to develop a model to estimate PWV from age and rou-
tine BP measurements, and the result is predictive of outcomes.13,14

Machine learning has also been used to develop models to estimate
CBP from peripheral pressure waves, including using a generalized
transfer function to estimate a central pressure wave from a

peripheral wave,15 and using regression analysis to estimate CBP
from brachial BP and PWV.16 This critical review highlights relevant
ML techniques, their clinical utility, and directions for future research
to leverage the potential of ML for assessing vascular ageing
(Figure 1).

The role of machine learning in
assessing vascular age

Using machine learning to assess
vascular age
Machine learning has been used to develop two types of models to
assess vascular age: parameter estimation models and risk classifica-
tion models. Parameter estimation models estimate a target param-
eter from more easily obtained measurements, such as estimating
PWV from age and BP. Risk classification models classify a subject
according to their risk of a particular outcome or diagnosis, such as
being at high or low risk of cardiovascular (CV) events. Table 1 pro-
vides examples of clinical applications of these two types of models,
detailing the ML techniques used in each case.

The ML techniques used in vascular age assessment are predomin-
antly ‘supervised’ techniques—i.e. they learn how to generate an out-
put (a parameter or risk class) by learning from training input data
which are labelled with reference outputs. For instance, a model for
estimating PWV from age and BP can be developed using training
data consisting of the required inputs (age and BP) and desired out-
puts (PWV values).18 Table 2 provides details of the capabilities of
supervised ML techniques, allowing one to choose an appropriate
technique for a particular application. The choice of ML technique is
determined by the type of output required (a parameter or a risk
class) and the nature of the input data (single, multiple, or waveform
inputs). Often more than one technique is suitable for a particular
problem, in which case the choice can be informed by the pros and
cons of using each technique.35

Opportunities
Machine learning provides opportunities to enhance vascular age as-
sessment through the analysis of complex datasets, digital signals, and
images. In research, ML is now widely used, aided by large datasets
and high-performance computing systems. In clinical practice, ML-
based technologies present opportunities to improve the accessibility
and performance of vascular age assessments. These opportunities
are now discussed.

Data availability

A large amount of biomedical and clinical data is routinely col-
lected which is suitable for training ML models to assess vascular
age. Advances in measurement techniques and systems have
allowed for the acquisition of high-fidelity data suitable for assess-
ing vascular age. Arterial pulse wave signals can be acquired in spe-
cialist clinics using, for instance, applanation tonometry and
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ultrasound. Additional signals such as the electrocardiogram
(ECG), ballistocardiogram, and photoplethysmogram (PPG) can
be acquired by consumer devices such as smartphones and fitness
trackers. Images of the cardiovascular system and affected organs
can be acquired by ultrasound, magnetic resonance imaging, and
computed tomography, resulting in improved visual assessment of
functional and structural changes associated with disease and path-
ology. The multifaceted nature and high dimensionality of such
data is the primary driving force in cardiovascular Big Data.36

Additionally, the complexity of the data often renders traditional
statistical methods insufficient to efficiently develop predictive
tools to assist clinical decision-making. In contrast, ML offers
promise for developing methods to improve and automate cardio-
vascular health assessment, and to guide therapeutic interventions.

Computing systems

Recent years have seen rapid advancements in both hardware and
software.37 The refinement of hardware components, such as high-
performance processors and graphics processing units, has reduced
the computational time required to train an ML model, even with
large datasets. Additionally, many ML techniques are widely available
in software packages such as Python and MATLAB. These advances
make it practical for researchers to use ML routinely.

Improving the accessibility of vascular age assessment

Machine learning-based techniques for assessing vascular age have
potential to improve the accessibility of vascular age assessment.
Currently, BP is the only biomarker of vascular age which is rou-
tinely measured in primary care. A number of issues limit the use
of other markers of vascular ageing.5 While cfPWV has satisfac-
tory repeatability,38 its measurement requires a skilled operator,
and alternative PWV measurements which can be obtained more
easily may not reflect the status of the aorta as precisely, such as
carotid-radial PWV39 and PWV assessed from the ECG and a
pulse wave.40 There is a similar tension between precision and
ease of measurement for CBP.15,41 Machine learning-based techni-
ques are now being developed which could be used in primary
care with minimal additional workload, such as using routinely col-
lected clinical data to estimate CBP or PWV or assessing vascular
age from pulse waves acquired by pulse oximeters (as detailed in
the Case Studies below). Thus, ML-based techniques have poten-
tial to improve the accessibility of vascular age assessment.

Improving the performance of vascular age assessment

Machine learning-based techniques may have potential to provide
improved performance over traditional statistical modelling techni-
ques, although this potential has not yet been widely realised.12

Machine learning-based methods are particularly well-suited to

Figure 1 Using machine learning to assess vascular ageing biomarkers from more easily obtained measurements. BMI, body mass index; CV,

cardiovascular; , presence of CV event; , absence of CV event. Adapted from: ‘Adult male with organs’, Wikimedia Commons, under CC0 1.0.
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handling high-volume data including images, time-series, or multi-
dimensional data. In such cases, ML can have an immense advantage
and offer possibilities far beyond traditional techniques. Some studies
have compared the performance of novel ML-based techniques with
traditional techniques. For instance, Xiao et al.21 compared using a
neural network to estimate CBP from peripheral pulse waves with
the widely used transfer function approach. They did not find a sub-
stantial difference in performance between the two approaches.
More broadly, ML has been found not to confer benefit over logistic
regression for clinical prediction models.12 Therefore, despite the
current hype around artificial intelligence, there is still uncertainty in
whether ML-based methods have an advantage over traditional stat-
istical methods in vascular age assessment. Several ML methods have
demonstrated minimal benefit over traditional approaches. In par-
ticular, a recent study reported an improvement in the identification
of young, asymptomatic individuals with an increased risk of

subclinical atherosclerosis.42 Another study showed that ML meth-
ods offered only limited improvement over traditional logistic regres-
sion43 (see section Risk classification). In the future, it is likely that
ML-based techniques would either have to provide improved per-
formance or facilitate easier measurement, in order to replace trad-
itional statistical approaches.

Challenges
In this section, we discuss key challenges in developing ML-based
techniques for assessing vascular age.

Data acquisition

Large datasets are required to develop ML-based techniques.
Devices for acquiring arterial pulse waves in the clinic, such as ultra-
sound and applanation tonometry devices, often output the data in a
format suitable for analysis, although they require a skilled operator.

....................................................................................................................................................................................................................

Table 1 Applications of statistical modelling and machine learning in vascular age assessment

Type of model ML techniques Applications

Parameter estimation Simple linear regression Estimating carotid AI from radial AI17 (mean error: -4 ± 23%, R2 = 0.66)

Transfer function Estimate CBP from a cuff BP and peripheral pressure pulse waves15 [mean error: 4.49 (-6.06,

-2.92) mmHg]

Multiple linear regression Estimating PWV from age and BP (developed in,18 and applied in13) [mean error: -0.3% (-15%,

þ17%)]

Estimating age from non-invasive CV parameters19 (men: MAE = 6.91 years, R2 = 0.55, women:

MAE = 5.87 years, R2 = 0.69)

Gaussian process regression Estimating PWV and BP from PTT and features derived from non-invasive pulse waves20 (PWV:

R2 = 0.88, SBP: R2 = 0.56, DBP: R2 = 0.87)

Neural network Estimating systolic CBP from radial systolic and diastolic BPs21 (R2 = 0.94, mean error: -0.1 ± 3.9

mmHg)

Estimating ankle-brachial index from a PPG pulse wave22 (precision/sensitivity: 97.7%/97.1%)

Estimating PWV and BP from either PPG pulse waves, or features derived from PPG pulse

waves23 (PWV: R2 = 0.93, SBP: R2 = 0.80, DBP: R2 = 0.92)

Ensemble of neural networks Estimating age from blood test results24 (R2 = 0.82, MAE = 5.55 years)

Estimating PWV from routine clinical variables and an uncalibrated carotid tonometry wave-

form25 (mean error: 0.00 ± 2.07 m/s, r = 0.72)

Risk classification Decision tree Predicting who will suffer a CV event by combining routinely measured and blood test data, and

non-invasive CV parameters26 (sensitivity/specificity: 98%/95%)

Classifying subjects as high or low risk for CV events using risk factors and parameters derived

from carotid ultrasound images27 (sensitivity/specificity: 9.5%/96.5% and 5.5%/99%)

Predicting the presence of obstructive coronary artery disease from clinical data and the coron-

ary artery calcium score28 (sensitivity/specificity: 78%/62.8% and 80%/81.5%)

Predicting the presence of coronary heart disease from PWV and clinical and laboratory parame-

ters29 (sensitivity/specificity: 82%/85%)

Support vector machine Predicting who will suffer a CV event from risk factors30 (sensitivity/specificity: 86%/95%)

Classifying a set of pulse wave features as ‘young’ or ‘old’,31 or ‘high’ or ‘low’ PWV32 (sensitivity/

specificity: 93%/78%)

Neural network Predicting coronary heart disease from clinical data, haemodynamic data, and PWV33 (sensitivity/

specificity: 80%/92%)

Ensemble of ML pipelines Predicting CV events from biobank variables (including many which are not routinely recorded)34

(sensitivity/specificity: 69.9%/—)

AI, augmentation index; BP, blood pressure; CBP, central blood pressure; CV, cardiovascular; DBP, diastolic BP; MAE, mean absolute error; ML, machine learning; PPG, photo-
plethysmogram; PTT, pulse transit time; PWV, pulse wave velocity; R2, coefficient of determination; SBP, systolic blood pressure.
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..On the other hand, consumer devices that measure pulse wave sig-
nals (such as smartphones, smartwatches, and fitness trackers) can be
used by patients with no need for a skilled operator, but do not rou-
tinely record the data for analysis. Those devices which do record
pulse waves in everyday life can require much user interaction for re-
liable data acquisition.44 While studies examining PWV exist, these
are often limited by small sample size, homogeneity, lack of follow-up
with CV events and diverse health profiles. Nonetheless, suitable
datasets have previously been acquired in large-scale local and inter-
national studies.18,45

The use of reliable datasets is critical for developing accurate and
clinically relevant ML models. The following should be considered.
First, measurement protocols should be coherent and properly
standardized, as the data collection methodology impacts the learn-
ing process performed by the models. Second, the measured input
and reference data should be of high quality, particularly clinical
measurements (such as PPG waveforms, see section Using consumer
devices to assess vascular age in daily life) which can be subject to
errors due to improper calibration, noise, interference, or artefact.
Importantly, the use of unsuitable data can lead to inaccurate out-
comes and enable false medical decisions (e.g. in applications of sub-
ject classification using risk scores and clinical diagnoses). Additional
considerations on the reference techniques can be found in section
Validation types of machine learning-based methods.

Experimental methodology

A recent review highlighted shortcomings in the methodology used
to develop clinical prediction models using ML.12 First, few studies
used external validation, and many either did not report validation
procedures clearly or had potential biases in validation procedures,
such as selecting variables on all data or not repeating all modelling
steps in the validation. Second, studies commonly assessed perform-
ance using the area under the receiver operator curve (AUROC)
statistic, but usually did not assess the accuracy of risk estimates.12

This recent review provides important guidance, which can inform fu-
ture studies using ML in vascular ageing assessment.

In addition, the lack of interpretability of ML models has often been
considered as a limitation for the use of ML in clinical applications.
Although ongoing innovations include establishing new concepts, such
as explainable ML46 or parallel models, where one is used for core
computation and the other for interpretation,47,48 the relevant research
is still ongoing. Nonetheless, if ML models are highly accurate and guide-
lines for the proper clinical use of ML are established, then we might
consider using them for specific tasks. Simulated data, generated from a
computer model (e.g. the data in the Case Studies below) could aid in-
terpretability, as they are derived from deterministic models in which
relationships between variables may be more easily explained.

Care is required to ensure ML models are developed and used ap-
propriately. When developing an ML model, there is a danger of
overfitting to the training data, reducing generalizability. Techniques
such as feature selection can be used to determine which clinical bio-
markers should be included in the model. When using a model, if the
input data is of poor quality then the output will be affected, poten-
tially leading to misdiagnosis.49 High quality data, which has been cap-
tured with clinical aptitude and pre-processed appropriately (i.e.
missing values adjusted, data transformation), may lead to better sen-
sitivity and specificity. Hence, guidelines for the use of ML in clinical
prediction are warranted, as well as the need to consult with biosta-
tisticians to minimize preventable errors.

Reporting machine learning models

The TRIPOD (Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis) statement provides a
checklist of 22 methodological aspects that should be reported in
studies of prediction models.50 A new statement specific to ML stud-
ies is now being developed.51 Even with clear and concise reporting
of the methods used to design and validate models, further quality as-
surance through external validation is required. However, well-
grounded external validation studies are sparse as often there is a
lack of available data other than that used for model development.52

Even with access to sufficiently large datasets, external validation
studies are often poorly reported.53 It is important that rigorous

......................................................................................................................................................................

........................................................................ ......................................................................................

....................................................................................................................................................................................................................

Table 2 The Capabilities of selected statistical modelling and supervised machine learning techniques

ML technique Capabilities

Output type Input type

Parameter estimation Risk classification Single input Multiple inputs Waveform input

Simple linear regression �17 X �17 X X

Transfer function �15 X �15 X �15

Multiple linear regression �18 X X �18 X

Gaussian process regression �20 X X �20 X

Neural network �21 �33 X �21 �22

Decision tree � �26 X �26 X

Support vector machine X �30 X �30 X

Model types: (i) parameter estimation—estimating a vascular ageing parameter (such as central blood pressure) from more easily obtained measurements; (ii) risk classifica-
tion—categorizing patients according to whether or not they are likely to experience an event, or the presence or absence of a diagnosis.
Input types: (i) single input—a single numerical value (e.g. age); (ii) multiple inputs; (iii) waveform input—whether or not the ML technique can accept a waveform as one of the
inputs (e.g. a pulse wave).
ML, machine learning.
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.
procedural steps are adhered to during the design, validation, and ex-
ternal validation of ML-based techniques to enhance vascular ageing
assessment.

Benchmark datasets

Benchmark datasets could provide a standardized approach to devel-
oping ML-based techniques for assessing vascular age. Benchmark
datasets are datasets that have been chosen to be the ‘standard’ for a
model to be evaluated against.54 Benchmark datasets should contain
data reflective of the target population and ideally contain a wide
range of characteristics to allow the strengths and weaknesses of ML-
based techniques to be assessed.55 To the best of our knowledge,
there is no currently known registry or biobank containing a ‘gold
standard’ benchmark dataset that may be used for ML studies in vas-
cular age assessment. Hence, future endeavours should consider the
establishment of a registry or consortium, containing data with rele-
vant markers of arterial stiffness, that has both adequate sample size
and is reflective of the target population.5

Case studies
Case studies of the use of ML in vascular age assessment are now pre-
sented. To aid reproducibility, the case studies use publicly available,
simulated haemodynamic data for 3837 healthy adult subjects aged
from 25 to 75 years old from the Pulse Wave Database.56 The simu-
lated subjects all had different cardiovascular properties within normal
ranges, including arterial stiffness, BP, aortic diameter, stroke volume,
and heart rate (HR). The case studies are each accompanied by a tu-
torial allowing them to be replicated using the openly available data
and source code (as detailed in the Supplementary material online). A
case study is now presented on using a random forest regressor to es-
timate CBP from age, cuff BP, and HR. Two further case studies are
provided in the Supplementary material online on: (i) using multiple lin-
ear regression to estimate PWV from age and BP and (ii) using a neural
network to assess vascular age from pulse waves.

In this case study, central systolic (CSBP) and diastolic BP (CDBP)
are estimated from age, brachial (cuff) SBP (BSBP) and DBP (BDBP),
and HR using a random forest regressor.57 A random forest regres-
sor is an ensemble learning method which consists of a collection of
randomized base regression trees. Each tree is built by splitting the
source set (the root node of the tree) into branches based on a cer-
tain feature of the input variables. This process is repeated recursively
until the subset at a node has the same values of the target output
variable. The final prediction is provided by averaging the predictions
of all the regression trees. The formal structure of a random forest
predictor is shown in Figure 2. This case study employs two random
forest regression models to predict, respectively, CSBP and CDBP
(target outputs) from age, BSBP, BDBP, and HR (inputs). The regres-
sion models were trained using 60% of the entire population while
20% was kept for testing. Given the importance of an external valid-
ation in the design of an ML study, a ‘validation step’ is incorporated
in the case study. In particular, we hold out the remaining 20% of the
data (referred to as the validation set) and evaluate the performance
of the ML regression model on these data. The number of trees of
each random forest regressor was set to 100.

The comparison between the estimated CSBP and the reference
CSBP is presented in Figure 3 (top panel). The limits of agreement

between the estimated and reference CDBP (this statistic is
described in section Estimation of vascular parameters) were narrow
at ±3 mmHg. Good performance was also achieved for the estima-
tion of CDBP (see lower panel of Figure 3), with limits of agreement
of ±1 mmHg.

A similar performance was reported when the models were vali-
dated using the validation set. The limits of agreement between the
estimated and reference data were found to be equal to ±3 mmHg
for CSBP and ±1 mmHg for CDBP, respectively. It should be noted
that the simulated data do not permit an actual external validation;
yet, this case study aims to demonstrate the practical steps for the
proper design of an ML method.

This example demonstrates how ML can potentially be used to
transform routine measurements into an additional parameter which
is difficult to acquire in practice. This case study indicated that CSBP
and CDBP could be estimated precisely from age, brachial BPs, and
HR using a random forest regressor. This illustrates a possible appli-
cation for an ML-based tool in clinical practice.

Validation of machine
learning-based methods

This section presents different types of validation techniques which
are commonly used to evaluate the accuracy of an ML model.
Subsequently, it summarizes the reported performance of previously
developed methods on the estimation of vascular parameters and
risk classification.

Validation types of machine
learning-based methods
In ML model studies, the performance of the model is usually
assessed using either cross-validation or external validation methods.
In cross-validation, the ML model is trained against a subset of the
data before being evaluated against the remaining data, and this pro-
cess is repeated using different subsets of the data.58 This technique
helps overcome issues such as selection bias or overfitting. However,
the model performance needs to be tested for heterogeneity, which
is performed through external validation. The use of independent
datasets allows proper assessment of whether a model can be gener-
alized to populations outside of the study data.52

Many studies, unfortunately, overlook the need to externally valid-
ate ML models and often find their reported model performances to
be limited to the study-specific population, leading to potentially
wasted resources.59 However, a recent ML-based study automating
phase-contrast cardiovascular magnetic resonance (CMR) aortic
flow quantification is one of very few studies to have performed both
cross-validation and external validation.60 They showed that in-house
ML segmentation, using a neural network approach on 190 coronary
artery disease patients, was robust, did not require human interven-
tion, and strongly correlated with the manual quantification of an ex-
pert CMR reader (r > 0.99). When externally validated against two
institutionally independent datasets (n = 20), ML model performance
strongly correlated with manual segmentation (r > 0.99). Though
their external validation sample size is relatively low, they have
reported clear methodology and their findings have potential to be
independently tested by other researchers.
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..Furthermore, attention should be paid to the selection of the tech-
nique to be used to acquire the data for the ML modelling. The use of
more reliable and thoroughly validated commercial devices should
result in a more robust prediction model when compared to a pre-
diction model trained using data from a less validated apparatus. For
instance, one such study used an artificial neural network to predict
CBP from radial BP measurements.21 Central blood pressure esti-
mates may agree more closely with the gold standard of invasive BP,
although estimates of brachial cuff BP may be more useful as current
clinical guidelines are based on cuff BP data. Similarly, in the case of
PWV, reference values have been obtained for cfPWV, and, in this
view, ML prediction of cfPWV might be more valuable than predic-
tion of invasive PWV. Hence, one should always consider the current
state-of-knowledge and the particular needs of each application and
select with caution the data and the design of their ML estimator.

Estimation of vascular parameters
Table 3 summarizes the findings of only a limited number of validation
studies for the ML estimation of PWV and CBP. Those studies are
based on the use of easily obtained clinical data which are

transformed into more relevant parameters of vascular ageing.
Generally, in vivo validations demonstrated a good performance in
most of the proposed ML methods (Table 3). In these studies, the
performance of ML-based methods was often assessed using the cor-
relation between estimated and reference parameter values. The lim-
its of agreement technique, also known as Bland–Altman analysis,
was also used, although less frequently. This technique quantifies the
accuracy and precision of measurements using the bias (mean error)
and limits of agreement, which is twice the standard deviation of the
errors.61 The limits of agreement technique is preferred for assessing
agreement between two measurement methods since correlation
coefficients can be misleading in this context.61

Although there are not many meta-analyses to systematically com-
pare the performance of ML models with traditional statistical meth-
ods for the estimation of vascular parameters, some studies have
compared the two approaches. In some cases,25,62 ML models
appeared to outperform the traditional prediction algorithms. A re-
view including 28 studies concluded that, in general, non-linear ML
models demonstrate a higher precision when compared to the con-
ventional linear models.62 However, in cases where traditional

Figure 2 Schematic representation of a random forest regression prediction.
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..methods had already achieved a high accuracy, ML provided no add-
itional clinically significant value.21 Nevertheless, an advantage of the
ML modelling may pertain to the reduction of the complexity and the
cost of the measurements which are required for performing the
traditional techniques. Tavallali et al.25 proposed an ML-based
method to estimate cfPWV non-invasively using a single uncalibrated
carotid waveform acquired by tonometry in conjunction with a set of
routine clinical variables such as age and BP. Their model estimated
cfPWV with an RMSE of 1.12 m/s, compared to the reference
method.18 In addition, authors further supported their findings by
showing that estimated PWV was significantly associated with
increased risk of future CVD events by using the Framingham data-
base, and this predictive ability was similar to the one by true cfPWV
values. Such an approach, along with the high accuracy, offers a less
expensive and more convenient way to assess PWV as it does not re-
quire the additional measurements of the ECG signal and the femoral

pressure tonometry recording which are used in the traditional
cfPWV measurement.

Risk classification
The performance of selected ML-based techniques for vascular risk
classification is summarized in Table 4. Each study reported the sensi-
tivity and specificity of techniques for classifying patients into two cat-
egories, such as whether or not they would experience a CV event.
The AUROC statistic, also reported in several studies, combines the
sensitivity and specificity to provide a single summary statistic. It
varies within the range of 0.0–1.0, where c-values of 0.7–0.8 show ac-
ceptable discrimination, and values larger than 0.9 show exceptional
discrimination. While useful, it should be noted that this statistic can
be misleading when the prevalence of the disease is low, such as a
low CV event rate, and other statistics such as the positive predictive
value provide complementary insights.64

Figure 3 A case study of estimating central systolic blood pressure and central diastolic blood pressure from age, brachial systolic and diastolic
blood pressures, and heart rate using a random forest regressor. CDBP, central diastolic blood pressure; CSBP, central systolic blood pressure; LOA,
limit of agreement.
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.
A key interest in medical research is whether an additional bio-

marker adds to an existing model. Cook65 proposed a reclassification
table which indicates the number of subjects who moved to another
risk group and the number of those who remained in the same risk
group as a result of adding a new predictor. The reclassification con-
cept was extended with the introduction of two metrics, namely, the
net reclassification improvement (NRI) and the integrated discrimin-
ation improvement (IDI).66 An NRI equal to 10% means that subjects
with outcome were�10% more likely to have an improved reclassifi-
cation in comparison with subjects with no outcome. An IDI equal to
10% means that the difference in average predicted risks between
the subjects with and without the outcome was increased by 10% in
the new model. These metrics have been very useful in studies where
the performance for different combinations of predictors was
assessed or/and the performance of traditional techniques was com-
pared to the performance of novel ML-based methods.13,30

However, prospective studies using reclassification measures to as-
sess the predictive ability of ML-based vascular ageing biomarkers are
currently lacking.

Moreover, studies have investigated the potential additive value of
ML by comparing the performance of traditional methods to ML-
based approaches. A recent study of Desai et al. compared several
ML models to conventional logistic regression in predicting key heart
failure (HF) outcomes.43 It was demonstrated that ML improved
only slightly the predictive precision. Nevertheless, incorporation of
additional parameters from electronic medical records (e.g. labora-
tory test results as continuous variables) to the ML models showed a
competitive advantage over the traditional statistical approach. The
authors attributed the much improved performance to the non-para-
metric nature of the tree-based ML models at making predictions
while utilizing continuous variables as inputs. Hence, ML-based
approaches might not outperform the conventional modelling in any
case, but concurrent refinement of the model’s configuration and fea-
ture selection may lead to a superior performance for discriminating
several clinical outcomes.

Weng et al.,67 however, reported improved performance with ML
models in comparison to the traditional AHA/ACC risk prediction
tool. All ML models had a better predictive capacity at discriminating
individuals with or without CV events. An artificial neural network
outperformed all the ML models achieving an AUC equal to 0.76.67

Ambale-Venkatesh et al.68 used the longitudinal Multi-Ethnic Study
for Atherosclerosis (MESA) cohort study to compare the accuracy
between ML-based approaches and the traditional CV risk assess-
ment models (i.e. standard Cox, LASSO-Cox, and AIC-Cox). A large
ensemble of 735 variables from imaging, non-invasive tests, question-
naires, and biomarker panels were used as inputs. The outcomes
included death, stroke, cardiovascular events, incidents of atrial fibril-
lation, and HF events.68 Authors reported an increase in the C-statis-
tic for all outcomes, when they compared their results to the well-
established conventional risk scores, including the Framingham and
the American College of Cardiology/American Heart Association
Atherosclerotic Cardiovascular Disease (ACC/AHA ASCVD) risk
scores. In another study, Kakadiaris et al.30 also used the MESA co-
hort and demonstrated that their ML Risk Calculator
(sensitivity = 0.96, specificity = 0.87, accuracy = 0.89) outperformed
that ACC/AHA Risk Calculator (sensitivity = 0.75, specificity = 0.59,
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accuracy = 0.62) for predicting all CVD events while recommending
less drug therapy and missing fewer events.

ML models are versatile and can be more flexible compared to
traditional risk calculators.27,30 They can combine a plethora of differ-
ent data sources and lead to more precise and relevant CV risk strati-
fication.27 Photoplethysmogram and radial BP pulse waves are
commonly used as inputs in ML regression models, as reported in
Table 3. Moreover, important pulse wave features are presented in
Figure 4. Classification models use a wider range of inputs, such as
images, tonometric signals, and laboratory data (Table 4). Finally, ML
models can be trained using artificially generated datasets via data
augmentation techniques and thus further increase their predictive
capacity over the conventional risk assessment techniques.

The clinical utility of machine
learning-based methods

Currently, there is no single correct diagnosis approach for any given
patients for CVD prediction due to different clinical characteristics
and variability in symptoms of patients and imperfections in results
obtained from non-invasive and cardiac tests. Therefore, individual
CV risk determination is an important path to take towards a predict-
ive medicine. There is a growing need to find further appropriate,
easy to apply, non-invasive tests, and biomarkers that will increase
the yield of CVD prediction. However, algorithm conception for cor-
rect classification of CVD risk factors remains a major problem.

From a clinical perspective, the data-driven approach of ML may
also help optimize pulse wave analaysis algorithms by comparing pre-
dictions with data simultaneously obtained through reference stand-
ards (typically intra-arterial measurements) and improve the quality
assessment of the pulsatile signals. Application of deep learning ana-
lysis to ‘big data’ collected through registries may help improve the
patient risk stratification and allow accurate long-term risk
prediction.

In the contemporary published data, development of ML models
and their validation has been demonstrated in a few clinical studies.
Initially, the early data were derived from cross-sectional data that
provided a proof of concept for researchers to put their algorithms
to test with real clinical data (see Tables 1 and 2). The ‘one-million
dollar’ question is whether the ML-derived estimates of vascular age-
ing were accurate in estimating the certain vascular ageing biomarker
and, of course, whether these ML-derived estimates were at least as
prognostic of hard endpoints as their reference method. Although no
real conclusions can be made based on the scarce available data on
most of the vascular ageing indices, the initial results are promising. In
a very elegantly performed study, ambulatory BP measurements and
clinical profile were used by Antza et al.69 to derive an early vascular
aging (EVA) ambulatory score comprising 24-h SBP, 24-h DBP, 24-h
HR, age, sex, BMI, diabetes mellitus (yes–no), and estimated glomeru-
lar filtration rate (modification of diet in renal disease). This score
was shown to identify with good accuracy hypertensive patients with
EVA that was defined as cfPWV values higher than the expected for
age average values according to European population data and fur-
ther confirmed that the use of scores to identify early vascular ageing
is feasible.70
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..In an effort to improve diagnostic accuracy, Vallée et al.33 used an
algorithm based on aortic PWV and ML to better predict CAD. They
developed an aPWV index as a measure of an individual patient’s aor-
tic stiffness independent of age, gender, mean BP, and HR. The aPWV
index was thus calculated as (measured aPWV - theoretical aPWV)/
theoretical aPWV and showed to predict CAD. Furthermore, con-
firming this strategy of ML-derived indices of vascular ageing were
two prospective studies and also data from larger cohorts that
assessed coronary calcification score.28 The first showed that PWV
derived by ML and an uncalibrated trace of carotid pressure wave-
form is a good prognostic factor of events in the Framingham study.25

The second estimated PWV by the Reference Values Equations and
showed that ePWV is both capable in predicting events but in se-
quential measurements could also be used as to monitor treatment
efficacy and improve prognosis beyond BP in hypertensives.13,14

However, the events that were mainly predicted by estimated PWV
were HF, cerebrovascular events, and all-cause mortality. This con-
firms the closer link of estimated PWV to events related to arterio-
sclerosis rather than atherosclerosis.71 Therefore, there is a need to
identify the appropriate population that will benefit most from the
use of ML-based methods such as hypertensives or HF patients,72 as
well as the most suitable outcomes such as HF and all-cause mortal-
ity, as was clearly demonstrated by the recent ambiguous results of
the SPARTE trial.73

Although ML applications are projected to greatly influence clinical
practice, there remains little by way of robust clinical validation of
such technologies, and, hence, very few are currently in clinical use.
The greatest leap forward in the adoption of ML technologies in clin-
ical practice will be made by ‘translating technical success to meaning-
ful clinical impact’.74 This will be aided by establishing methodological
frameworks for evaluating and comparing ML tools. Much progress
has been made already on this with the TRIPOD statement (see sec-
tion Reporting machine learning models).

In the near future, it is not science fiction to envisage ML working
in the background of standard primary prevention assessment in an

outpatient clinic or even through specific applications in a mobile
phone or laptop/notebook, gathering the variables automatically and
allowing an immediate risk score computation. These methods are al-
ready used in everyday practice by many applications that utilize ML
secretly that the user is not aware of. An everyday characteristic ex-
ample is that of web browser advertisements which are based on the
passive (unknown to user) collection of parameters and their seam-
less input into ML algorithms. With the latest advancements in auto-
mated feature ranking, ML can be independent of user input and
practically fully automated. This is the big step needed to provide a
more personalized medicine that will fit each patient’s needs and also
support physicians in their everyday practise with on-the-fly answers
and solutions specific to the patient. This principle will amalgamate
personal characteristics, input from medical equipment/software, and
minimal input from physicians to shape the algorithm for each
patient.

Future research directions

Harnessing electronic health record data
Electronic health records (EHRs) contain a plethora of patient data,
ranging from demographic details and clinical notes to laboratory test
results and medical images. While EHRs were initially designed to im-
prove the efficiency and accessibility of healthcare systems, they have
found varied applications in clinical research,75,76 including cardiovas-
cular event prediction.77,78 In the future EHR data could first be used
to identify patients with known risk factors who may benefit from
vascular age assessment. Machine learning-based techniques for this
purpose would need moderate accuracy to justify the additional clin-
ical workload of assessments. Second, EHR data could be used to es-
timate vascular ageing parameters which could be used to inform
clinical decision-making. Machine learning-based techniques would
need a high level of accuracy in this scenario to ensure patient safety.

Figure 4 Pulse wave analysis of exemplary photoplethysmography and radial blood pressure waveforms. Adapted from: ‘Photoplethysmogram
pulse wave composition’, under CC BY 4.0. BP, blood pressure; PPG, photoplethysmography.
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However, there are limitations to the use of EHR data, including

data heterogeneity and model interpretability. For instance, Lauritsen
et al.79 employed various ML models using EHR data for early detec-
tion of sepsis, including gradient boosting, multilayer perceptron, and
long-term recurrent convolutional networks. While the prediction
models performed moderately well, the generalizability of the ML
models may be limited. This is likely due to their high dimensional fea-
ture space.

The pulse wave: a gold mine of
physiological information
The arterial pulse wave is a rich source of information for assessing
vascular health in humans as it is influenced by the cardiac and vascu-
lar properties80 and thus can reflect physiological changes in the car-
diovasculature.80–82 Arterial pulse signals are measured in both
clinical practice and wearable devices. Two commonly obtained pulse
signals are the PPG and radial BP. Numerous physiological parame-
ters can be computed from these signals, which can be useful for
health monitoring and clinical decision-making. Previous studies have
used an abundance of features extracted from either the PPG or BP
waveform (Figure 4) and incorporated them into a regression pipe-
line for the estimation of major vascular biomarkers.21,83,84

Moreover, further opportunities can arise as deep learning algorithms
are capable of revealing more sophisticated pieces of vascular infor-
mation through learning by themselves from the morphology of the
raw physiological signals85,86 without the need for manually extracted
features.

Using consumer devices to assess
vascular age in daily life
Research is ongoing to incorporate measures of vascular age into
consumer devices such as bathroom scales, smartphones, and wrist-
worn fitness trackers.87–89 The bathroom scales approach assesses
PWV from the time delay between cardiac ejection and arrival of the
pulse at the foot, whereas technology for smartphones and fitness
trackers assesses vascular age from the shape of a single PPG pulse
wave. The use of consumer devices to assess arterial stiffness
presents several opportunities: these devices can be used away from
the clinical setting, avoiding potential inaccuracies due to white-coat
hypertension,90 and may facilitate assessment in a range of additional
situations, e.g. after exercise,91 while asleep, and during potentially
stressful daily activities. Results can be fed back to the user immedi-
ately and could be used to prompt lifestyle changes. Furthermore,
consumer devices can be used remotely, an important consideration
in the light of COVID-19. Alternatively, in a clinical setting nurses
could be engaged to measure vascular age using novel devices. These
methods could provide a relatively easy, cheap, and scalable method
for identifying individuals who may benefit from more detailed car-
diovascular risk assessment.

However, several challenges remain before the full potential of con-
sumer devices for assessing vascular age can be realized. First, measure-
ments should be contextualized according to the user’s activity: for
example, an elevated vascular age measured shortly after exercise
would be interpreted differently to a similar assessment during sleep.
Algorithms are being developed to detect when a user is sleeping from
wearable signals, which could be used to contextualize vascular ageing

assessments.92 Second, measurements may not be solely indicative of
large artery stiffness due to extended PWV path lengths, such as heart-
foot PWVs provided by bathroom scales, and the source of pulse
wave measurements, such as PPG-derived pulse waves being influ-
enced by the microvasculature. Third, measurements acquired from
consumer devices in daily life are more likely to be of low-quality due
to motion artefacts and poor sensor contact. Consequently, algo-
rithms are required to reject low-quality data, and prompt the user to
reposition the sensor and retake the recording when necessary.
Fourth, algorithms are required to post-process the repeated meas-
urements provided by consumer devices in order to condense the
data into a manageable summary statistic for clinical use and minimize
false alerts. Machine learning provides an approach with which to de-
sign such algorithms. Ideally, the summary statistic should be easily
comprehensible, comparable to known reference values, and have a
biological interpretation. Finally, device design can impact measure-
ments. For instance, wrist-worn devices can differ in their hardware
(such as the wavelength of light used by the pulse wave sensor), soft-
ware (such as filtering and analysis algorithms), and performance (such
as agreement between estimated and reference parameters).
Consequently, there is a need for standardization of measurement
processes where possible, and harmonization of measured parameters
to account for any remaining differences between devices.

A gold standard for vascular age
A reference vascular age is a necessary prerequisite to using super-
vised ML to develop new models with which to assess vascular age.
There are broadly two approaches to defining vascular age: (i) the
age of an individual with the same absolute cardiovascular risk but
controlled risk factors93 or (ii) the age of an individual with the same
cardiovascular state, such as arterial stiffness assessed through PWV,
but controlled risk factors. However, there is not yet consensus over
which approach should be used to calculate a reference vascular age.
A widely accepted approach to calculating vascular age supported by
strong evidence for its clinical utility would provide a reference with
which to train ML models, and justification for using ML models to as-
sess vascular age in clinical practice. A more elaborate method has
been recently proposed with the introduction of EVA and the use of
an estimation of vascular age based on PWV and its comparison to
the true age of each participant.94 This approach has the benefit of
incorporating age, BP, and treatment in the identification of patients
at high CVD risk. A cut-off based on the PWV reference values for
certain age, BP, and treatment might be a superior solution, but this
remains to be proven in future studies. Finally, in the future, the com-
bination of multiple risk factors analysed with ML methods could im-
prove the prediction of cardiovascular events.

Conclusion

Vascular ageing biomarkers have been found to be predictive of CV
risk independently of classical risk factors, and yet are not widely
used in clinical practice. This review highlights the utility of ML for
developing new techniques to assess vascular ageing biomarkers
quickly and accurately. When coupled with effective interventions
these new techniques could help reduce cardiovascular morbidity
and mortality. The plethora of data now routinely collected in
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.
healthcare settings and in daily life provides opportunity to identify
at-risk individuals, to monitor their CV health in daily life, and to as-
sess therapeutic targets. Much further work is required to develop
ML-based biomarkers to the required standard for them to be con-
sidered as surrogate endpoints of CV events,95 and to identify clinical
scenarios in which their use is cost-effective.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health.
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