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Noninvasive estimation of aortic 
hemodynamics and cardiac 
contractility using machine 
learning
Vasiliki Bikia1*, Theodore G. Papaioannou2, Stamatia Pagoulatou1, Georgios Rovas1, 
Evangelos Oikonomou2, Gerasimos Siasos2, Dimitris Tousoulis2 & Nikolaos Stergiopulos1

Cardiac and aortic characteristics are crucial for cardiovascular disease detection. However, 
noninvasive estimation of aortic hemodynamics and cardiac contractility is still challenging. This paper 
investigated the potential of estimating aortic systolic pressure (aSBP), cardiac output (CO), and end-
systolic elastance (Ees) from cuff-pressure and pulse wave velocity (PWV) using regression analysis. 
The importance of incorporating ejection fraction (EF) as additional input for estimating Ees was also 
assessed. The models, including Random Forest, Support Vector Regressor, Ridge, Gradient Boosting, 
were trained/validated using synthetic data (n = 4,018) from an in-silico model. When cuff-pressure and 
PWV were used as inputs, the normalized-RMSEs/correlations for aSBP, CO, and Ees (best-performing 
models) were 3.36 ± 0.74%/0.99, 7.60 ± 0.68%/0.96, and 16.96 ± 0.64%/0.37, respectively. Using EF as 
additional input for estimating Ees significantly improved the predictions (7.00 ± 0.78%/0.92). Results 
showed that the use of noninvasive pressure measurements allows estimating aSBP and CO with 
acceptable accuracy. In contrast, Ees cannot be predicted from pressure signals alone. Addition of the 
EF information greatly improves the estimated Ees. Accuracy of the model-derived aSBP compared 
to in-vivo aSBP (n = 783) was very satisfactory (5.26 ± 2.30%/0.97). Future in-vivo evaluation of CO 
and Ees estimations remains to be conducted. This novel methodology has potential to improve the 
noninvasive monitoring of aortic hemodynamics and cardiac contractility.

Clinical parameters directly measured in the heart or at the root of the aorta are crucial for detection, diagnosis, 
prognosis, treatment, and management of cardiovascular diseases1–4. Aortic hemodynamics, such as aortic sys-
tolic blood pressure (aSBP) and cardiac output (CO), are direct and more informative parameters for assessing 
cardiovascular health than corresponding measurements obtained at the peripheral arteries1,5,6. However, the 
gold standard techniques for measuring aSBP and CO are catheter-based and expensive7,8. Furthermore, there 
is a need for noninvasive estimation of cardiac contractility. End-systolic elastance (Ees), i.e., the slope of the 
end-systolic pressure–volume relation (ESPVR), is a pivotal determinant of left ventricular (LV) systolic per-
formance and a powerful index of the arterio-ventricular interaction4,9,10. Despite its clinical importance, the 
clinical use of this measure is limited by the need for invasive acquisition of multiple LV pressure–volume loops 
under varying loading conditions11.

Peripheral blood pressure (BP) measurements acquired by cuff sphygmomanometry have a fundamental role 
in the everyday clinical setting12. Recognizing the important differences between peripheral and central aortic 
pressures, significant efforts were oriented towards the noninvasive estimation of aortic hemodynamics, in par-
ticular aSBP, based on peripheral pressure measurements13. Among commonly used approaches for obtaining 
aSBP are generalized transfer functions (GTFs)14–16, moving average models17,18 and pulse wave analysis-based 
methods8,19,20. Nevertheless, the totality of them relies on the acquisition of the entire peripheral pressure wave-
form which can be tedious and susceptible to errors21.
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Prediction of CO constitutes a more challenging task due to its dependency on the patient-specific arterial 
dimensions22. Noninvasive CO monitoring has been addressed using single-beat pulse contour analysis23–25 
which, however, allows for the derivation of only an uncalibrated estimation instead of the absolute CO value. 
Finally, notable studies have been developed and validated against invasive techniques for estimating Ees for a 
single cardiac cycle26,27. The first fully noninvasive method was introduced by Chen et al.26. They proposed a 
simple equation to derive Ees from pressure arm-cuffs, echo-Doppler cardiography and electrocardiograms.

Despite the good precision of previous techniques, there has been no holistic and complete study to investigate 
the possibility of estimating aortic hemodynamics and cardiac contractility using readily available noninvasive 
measurements on the same population. This is mainly attributed to two inherent limitations, i.e., the lack of 
invasive data in a large scale and the ethical limitation to perform invasive measurements on a healthy popula-
tion, if no diagnostic reason has been provided.

Cardiovascular models hold a valuable position for addressing the challenge of limited access on in-vivo 
data28,29. They constitute a faithful representation of the real cardiovasculature and allow the study of pathophysi-
ological mechanisms and diseases30,31. Furthermore, they can provide a complete set of parameters to describe 
the system, whereas the simulated signals are noise-free.

The present study aimed to evaluate whether aortic hemodynamics (i.e., aSBP and CO) and cardiac contrac-
tility (i.e., Ees) can be accurately predicted by the use of brachial systolic blood pressure (brSBP) and diastolic 
blood pressure (brDBP), heart rate (HR), carotid-to-femoral pulse wave velocity (cfPWV), and, if necessary, 
ejection fraction (EF). These quantities were chosen as they are readily available in clinical practice and have been 
shown to provide information on the cardiovascular state2–4,32. To overcome the aforementioned limitations, we 
performed our experiments using synthetic data (n = 4,018), which were generated using a previously validated 
one-dimensional (1-D) mathematical model of the cardiovascular system28. Regression analysis was performed 
to establish the relationship between the noninvasive measurements (brSBP, brDBP, HR, cfPWV, (and EF)) and 
the invasive quantities of interest (aSBP, CO, and Ees). The regression pipeline of the present study is presented in 
Fig. 1. A ten-fold cross validation (CV) scheme was employed for the training/testing of the proposed approach. 
We evaluated four models including Random Forest33, Support Vector Regressor (SVR)34, Ridge35, and Gradient 
Boosting36. In addition, averaging of the multiple predictions was performed. Two approaches were investigated: 
(i) prediction of aSBP, CO, and Ees using brSBP, brDBP, HR, and cfPWV as inputs, and (ii) prediction of Ees using 
brSBP, brDBP, HR, cfPWV, and EF. The accuracy of our prediction was evaluated by comparing the model-
derived values with the reference simulated data. The accuracy of the aSBP model was subsequently validated 
using a large clinical dataset including in-vivo hemodynamic measurements (n = 783). Lack of CO and Ees in-vivo 
data impeded the clinical evaluation of the corresponding models.

Figure 1.   Schematic illustration of the regression pipeline. brSBP Brachial systolic blood pressure, brDBP 
brachial diastolic blood pressure, HR heart rate, cfPWV carotid-to-femoral pulse wave velocity, and EF ejection 
fraction were used as features for predicting aortic systolic blood pressure (aSBP), cardiac output (CO), and 
end-systolic elastance (Ees). Regression models were trained to map the input data to the respective target data 
of interest. The methodology presented here was followed for each regression process (in terms of set of inputs, 
model, and output).
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Results
Table 1 aggregates the cardiovascular parameters of the in-silico study population. The comparisons between the 
model-derived predictions and the reference data are presented below for each of the targeted outputs.

Prediction of aSBP, CO, and Ees from brSBP, brDBP, HR, and cfPWV.  For the four models, the 
comparison between the predicted aSBP and the actual aSBP is presented in Table 2. The average difference (in 
absolute value) between the model-aSBP and the reference aSBP was less than 5 mmHg in 87% of the total cases 
for Random Forest, 89% for SVR, 75% for Ridge, and 88% for Gradient Boosting, respectively. Accuracy, correla-
tion and agreement of model-CO estimates in comparison to the reference data are summarized in Table 3. The 

Table 1.   Distributions of the parameters of the in-silico population (n = 4,018).

Parameter

Value (n = 4,018)

Min Max Mean SD

End-systolic elastance (mmHg mL−1) 1.03 3.50 2.29 0.40

End-diastolic elastance (mmHg mL−1) 0.05 0.20 0.12 0.09

Filling pressure (mmHg) 7.00 23.00 15.12 2.10

Total arterial compliance (mL mmHg−1) 0.10 3.80 1.86 0.90

Total peripheral resistance (mmHg s mL−1) 0.50 1.30 0.80 0.19

Heart rate (bpm) 61.11 10.00 82.57 8.15

Aortic diameter (cm) 2.00 4.00 3.00 1.00

Height (cm) 150.00 200.00 175.00 25.00

Brachial systolic blood pressure (mmHg) 81.80 199.20 133.71 25.07

Brachial diastolic blood pressure (mmHg) 39.73 125.69 76.06 21.86

Aortic systolic blood pressure (mmHg) 76.05 188.31 121.71 24.96

Carotid-to-femoral pulse wave velocity (m s−1) 5.53 14.27 8.89 1.63

Cardiac output (L min−1) 3.26 10.56 5.94 1.22

Ejection fraction (%) 29.74 69.31 50.83 6.81

Table 2.   Regression statistics between model predicted aSBP and reference aSBP. The input features include 
brSBP, brDBP, HR, and cfPWV. r correlation coefficient; R2 coefficient of determination; RMSE root mean 
squared error; nRMSE normalized RMSE; MAE mean absolute error; RF random forest; SVR support vector 
regressor; GB gradient boosting.

Model Slope Intercept (mmHg) r R2 p-value RMSE (mmHg) nRMSE (%) MAE (mmHg)

Random forest 1.01 − 1.13 0.99 0.98  < 0.001 3.33 ± 1.16 3.57 ± 0.79 2.61 ± 0.87

SVR 1.01 − 1.00 0.99 0.98  < 0.001 3.13 ± 1.06 3.36 ± 0.74 2.43 ± 0.77

Ridge 0.99 1.64 0.98 0.96  < 0.001 4.55 ± 2.17 4.96 ± 2.04 3.73 ± 1.71

Gradient boosting 1.01 − 0.87 0.99 0.98  < 0.001 3.31 ± 1.22 3.55 ± 0.88 2.58 ± 0.90

Ensemble averaging (all) 1.01 − 0.85 0.99 0.98  < 0.001 3.31 ± 1.35 3.53 ± 1.00 2.59 ± 1.01

Ensemble averaging (RF, 
SVR, GB) 1.01 − 1.13 0.99 0.98  < 0.001 3.17 ± 1.13 3.40 ± 0.79 2.47 ± 0.84

Table 3.   Regression statistics between model predicted CO and reference CO. The input features include 
brSBP, brDBP, HR, and cfPWV. r correlation coefficient; R2 coefficient of determination; RMSE root mean 
squared error; nRMSE normalized RMSE; MAE mean absolute error; RF random forest; SVR support vector 
regressor; GB gradient boosting.

Model Slope Intercept (L min−1) r R2 p-value RMSE (L min−1) nRMSE (%) MAE (L min−1)

Random forest 0.99 0.03 0.95 0.90  < 0.001 0.36 ± 0.10 7.94 ± 0.95 0.29 ± 0.08

SVR 1.01 − 0.06 0.96 0.92  < 0.001 0.34 ± 0.08 7.60 ± 0.68 0.27 ± 0.06

Ridge 0.99 0.05 0.93 0.86  < 0.001 0.45 ± 0.07 10.15 ± 1.00 0.36 ± 0.05

Gradient boosting 1.00 0.01 0.95 0.90  < 0.001 0.35 ± 0.09 7.80 ± 0.86 0.28 ± 0.07

Ensemble averaging (all) 1.02 − 0.11 0.96 0.92  < 0.001 0.34 ± 0.08 7.59 ± 0.72 0.27 ± 0.06

Ensemble averaging (RF, 
SVR, GB) 1.01 − 0.05 0.96 0.92  < 0.001 0.34 ± 0.08 7.48 ± 0.73 0.27 ± 0.06
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difference between model-CO and reference CO was less than 0.3/0.5 L min−1 in 62/84% of the population for 
Random Forest, 65/86% for SVR, 50/74% for Ridge, and 63/85% for Gradient Boosting. Finally, the Ees predic-
tions are compared to the reference data in Table 4. High errors were reported for all of the regression models, 
whereas correlation between the estimated and the reference data was significantly poor.

Prediction of Ees from brSBP, brDBP, HR, cfPWV, and EF.  The statistics of the second regression 
analysis for Ees, i.e., after additional knowledge of EF, are presented in Table 5. Differences between the predicted 
Ees and the actual Ees were found to be less than 0.05/0.20 mmHg mL−1 in the 47/78%, 51/81%, 39/70%, and 
47/78% of the entire population, for Random Forest, SVR, Ridge, and Gradient Boosting, respectively.

The scatterplots and Bland–Altman graphs for the best performing models are provided in Figs. 2 and 3. The 
plotted data are corrupted with random noise (see “Blending the dataset with random noise” in “Methods”). 
Table 6 presents the frequency of selection for each hyperparameter value over the tenfold CV for the best per-
forming model. For the aSBP and Ees estimators, we observed an apparent consistency for the values of the C and 
gamma hyperparameters. Concretely, C and gamma were set at 100 and 0.001 for aSBP, and 10 and 0.001 for Ees, 
respectively, in the totality of the 10 folds. Such a consistency is not evident for the CO estimator where C was 
set at 100 for the 60% of the times. Nevertheless, gamma was again consistently selected to be 0.001.  

Sensitivity analysis for the training size.  The training size, that is, the number of data instances used 
for training, plays a major role on the accuracy of the predictions. To investigate the sensitivity to the number of 
training data, the training size was modified from 95 to 15% of the total number of cases (Fig. 4). For all models 
except for Ridge, the RMSEs were increased gradually with decreasing training size. For the Random Forest, 
SVR, and Gradient Boosting, the RMSEs of the aSBP predictions were less than 4.20 mmHg. Using Ridge, the 
RMSE varied at a lesser extent, while it was consistently higher compared to the rest of the models. For the 
CO predictions, all RMSE values were less than 0.50 L min−1. In particular, RMSE for SVR did not exceed 0.38 
L min−1, even when only the 15% of the entire population was used for the training. Finally, all RMSEs of Ees 
estimations were equal or below 0.20 mmHg mL−1.

Feature importance evaluation.  Figure 5 presents the correlation matrix reporting the inter-feature cor-
relations, and the correlations between the inputs and the target outputs. Table 7 presents the average impor-
tances of the input features, sorted in a descending order for predicting aSBP, CO, and Ees, respectively. For 

Table 4.   Regression statistics between model predicted Ees and reference Ees. The input features include brSBP, 
brDBP, HR, and cfPWV. r correlation coefficient; R2 coefficient of determination; RMSE root mean squared 
error; nRMSE normalized RMSE; MAE mean absolute error; RF random forest; SVR support vector regressor; 
GB gradient boosting.

Model Slope
Intercept 
(mmHg mL−1) r R2 p-value

RMSE 
(mmHg mL−1) nRMSE (%)

MAE 
(mmHg mL−1)

Random forest 0.93 0.17 0.36 0.13  < 0.001 0.38 ± 0.02 17.02 ± 0.63 0.30 ± 0.02

SVR 0.87 0.30 0.35 0.12  < 0.001 0.38 ± 0.02 17.11 ± 0.67 0.30 ± 0.02

Ridge 1.00 − 0.00 0.37 0.14  < 0.001 0.37 ± 0.02 16.96 ± 0.64 0.30 ± 0.02

Gradient boosting 0.99 0.02 0.33 0.10  < 0.001 0.38 ± 0.02 17.23 ± 0.72 0.31 ± 0.02

Ensemble averaging 
(all) 1.01 − 0.02 0.37 0.14  < 0.001 0.38 ± 0.02 16.98 ± 0.65 0.30 ± 0.02

Ensemble averaging 
(RF, SVR, GB) 0.99 0.02 0.36 0.13  < 0.001 0.38 ± 0.02 17.02 ± 0.66 0.30 ± 0.02

Table 5.   Regression statistics between model predicted Ees and reference Ees. The input features include brSBP, 
brDBP, HR, cfPWV, and EF. r correlation coefficient; R2 coefficient of determination; RMSE root mean squared 
error; nRMSE normalized RMSE; MAE mean absolute error; RF random forest; SVR support vector regressor; 
GB gradient boosting.

Model Slope
Intercept 
(mmHg mL−1) r R2 p-value

RMSE 
(mmHg mL−1) nRMSE (%)

MAE 
(mmHg mL−1)

Random forest 1.02 − 0.04 0.91 0.83  < 0.001 0.17 ± 0.02 7.57 ± 0.92 0.13 ± 0.02

SVR 1.00 0.00 0.92 0.85  < 0.001 0.15 ± 0.02 7.00 ± 0.78 0.12 ± 0.01

Ridge 0.97 0.06 0.87 0.76  < 0.001 0.20 ± 0.03 9.04 ± 1.36 0.16 ± 0.03

Gradient boosting 1.00 − 0.01 0.91 0.83  < 0.001 0.16 ± 0.02 7.43 ± 0.81 0.13 ± 0.01

Ensemble aaveraging 
(all) 1.03 − 0.08 0.92 0.85  < 0.001 0.16 ± 0.02 7.20 ± 0.76 0.13 ± 0.01

Ensemble averaging 
(RF, SVR, GB) 1.02 − 0.05 0.92 0.85  < 0.001 0.16 ± 0.01 7.04 ± 0.70 0.12 ± 0.01
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estimating aSBP, brSBP was found to be a critical contributor; the importance level (0.98) indicated that brSBP 
should be sufficient for estimating aSBP. The features of brSBP and cfPWV were the dominant contributors in 
the estimation of CO. Finally, EF was found to play the most significant role in the Ees prediction, followed by 
brDBP and HR. To further verify the sensitivity of the model’s performance to the input features, we present the 
RMSE variation for different subsets of input features (only for the best performing models) (Table 8).

For aSBP, it was shown again that the brSBP is the most pivotal predictor of aSBP; when brSBP was removed 
from the input features, the RMSE increased significantly. On the contrary, a precise prediction of CO requires 
the use of at least one of the brachial BP values; exclusion of the latter resulted to a deterioration of the model’s 
performance. Finally, Ees appears to be mainly sensitive to EF which significantly contributes to the accuracy of 
the Ees estimation. Results of the hypothesis testing for the ordinary least squares (OLS) regression coefficients 
are summarized in Table 9. All of the specified coefficients were statistically significantly different from zero.

In‑vivo evaluation of the aSBP estimations.  After the in-silico validation, the performance of the 
aSBP estimator was evaluated anew using clinical data. The population included both women (n = 136) and men 
(n = 647). The descriptive and clinical characteristics of the clinical population are presented in Table 10.

The comparisons between the predicted aSBP and the reference aSBP are presented below. First, we assessed 
the capacity of an SVR model, which was trained using only in-silico data, to make an accurate prediction for 
the human population (Fig. 6A,B). Then, we compared the latter’s performance with an SVR model which was 
trained using in-vivo data (Fig. 6C,D). The regression statistics between the model predictions and the reference 
data are summarized in Table 11. For the in-vivo data, the hypothesis testing’s results for the OLS regression 
coefficients are presented in Table 12. Figure 7 provides the correlation matrix for the in-vivo dataset.   

Discussion
The present study demonstrated that accurate estimations of central hemodynamics (namely, aSBP and CO) and 
left ventricular Ees from readily available noninvasive clinical measurements can be obtained by using machine 
learning models. Our basic hypothesis was whether brSBP, brDBP (cuff BP), HR, and cfPWV provide sufficient 
information to predict aSBP, CO, and Ees. However, for the determination of Ees, data from peripheral pressure 
waves fall short to provide a precise estimate. Our results indicated that additional information, such as the EF, 
which is directly measured in the heart (rather than the periphery) may improve the noninvasive Ees predic-
tions. To our best knowledge, this is the first work to evaluate the use of machine learning models in predicting 
cardiac contractility.

Figure 2.   Comparison between predicted and reference data. Scatterplots and Bland–Altman plots between: 
(A, B) the predicted aSBP and the reference aSBP, and (C, D) the predicted CO and the reference CO. The solid 
line of the scatterplots represents equality. In Bland–Altman plots, limits of agreement (LoA), within which 95% 
of errors are expected to lie, are defined by the two horizontal dashed lines.
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The best performing prediction model for all three target outputs was SVR which outperformed the other 
models accomplishing the highest accuracy. The Ees estimation was effectively achieved only with the inclusion 
of EF in the set of input features. In order to evaluate the robustness of our regression models, sensitivity to the 
training size was investigated. The RMSE was gradually increased with decreasing the number or training samples 
for Random Forest, SVR, and Gradient boosting. Variations were less distinct for Ridge. Despite the increase in 
RMSE with changes in the training size, the errors lied within acceptable limits37–41 for Random Forest, SVR, 
and Gradient Boosting.

Moreover, we tested the performance of an ensemble predictor which used averaging of the single models’ 
predictions. The ensemble prediction model did not outperform the best performing single prediction model 
(SVR). However, such an approach may benefit the estimations’ accuracy by reducing the variance of the predic-
tor and thus may improve the model’s generalization ability42. To avoid overwhelm the reader with an exhaustive 

Figure 3.   Comparison between predicted and reference data. Scatterplots and Bland–Altman plots between: 
(A, B) the predicted Ees and the reference Ees without ejection fraction as regression input, and (C, D) the 
predicted Ees and the reference Ees with ejection fraction as regression input. The solid line of the scatterplots 
represents equality. In Bland–Altman plots, limits of agreement (LoA), within which 95% of errors are expected 
to lie, are defined by the two horizontal dashed lines.

Table 6.   Statistical results in percentage of times that the hyperparameter value was selected during the 
hyperparameter tuning with tenfold cross validation process. Values selected consistently are presented in 
bold. aSBP aortic systolic blood pressure; CO cardiac output; Ees end-systolic elastance; SVR support vector 
regressor.

Model Hyperparameters Values

aSBP CO Ees

Times selected (%) Times selected (%) Times selected (%)

SVR

C

1 0 0 0

10 0 40 100

100 100 60 0

gamma

0.001 100 100 100

0.01 0 0 0

0.1 0 0 0

1 0 0 0
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Figure 4.   Sensitivity of RMSE to changes on the training size for aortic systolic blood pressure (aSBP) (A), 
cardiac output (CO) (B), and end-systolic elastance (Ees) (C). RMSE root mean square error; RF random forest; 
SVR support vector regressor; GB gradient boosting.

Figure 5.   Correlation matrix for the in-silico database.

Table 7.   Average feature importances for the prediction of aSBP, CO, and Ees. aSBP aortic systolic blood 
pressure; CO cardiac output; Ees end-systolic elastance; brSBP brachial systolic blood pressure; brDBP brachial 
diastolic blood pressure; HR heart rate; cfPWV carotid-to-femoral pulse wave velocity; EF ejection fraction.

Feature aSBP Feature CO Feature Ees

brSBP 0.98 brSBP 0.54 EF 0.65

brDBP 0.02 cfPWV 0.33 brDBP 0.16

HR 0.004 brDBP 0.08 HR 0.11

cfPWV 0.003 HR 0.04 cfPWV 0.05

brSBP 0.02



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:15015  | https://doi.org/10.1038/s41598-020-72147-8

www.nature.com/scientificreports/

Table 8.   Model performance for the best performing configurations (SVR) using different subsets of the input 
features. RMSE root mean squared error; r correlation coefficient; SVR support vector regressor; aSBP aortic 
systolic blood pressure; CO cardiac output; Ees end-systolic elastance; brSBP brachial systolic blood pressure; 
brDBP brachial diastolic blood pressure; HR heart rate; cfPWV carotid-to-femoral pulse wave velocity.

Input features’ subsets

RMSE (r)

aSBP (SVR) CO (SVR) Ees (SVR)

brSBP, brDBP, HR, cfPWV, EF – – 0.15 mmHg mL−1 (0.92)

brSBP, brDBP, HR, EF – – 0.17 mmHg mL−1 (0.91)

brSBP, brDBP, cfPWV, EF – – 0.17 mmHg mL−1 (0.91)

brSBP, HR, cfPWV, EF – – 0.22 mmHg mL−1 (0.83)

brDBP, HR, cfPWV, EF – – 0.17 mmHg mL−1 (0.91)

brSBP, brDBP, HR, cfPWV 3.13 mmHg (0.99) 0.34 L min−1 (0.96) 0.37 mmHg mL−1 (0.37)

brSBP, brDBP, HR 3.31 mmHg (0.99) 0.38 L min−1 (0.95) 0.38 mmHg mL−1 (0.33)

brSBP, brDBP, cfPWV 3.09 mmHg (0.99) 0.42 L min−1 (0.93) 0.38 mmHg −1 (0.35)

brSBP, HR, cfPWV 3.88 mmHg (0.99) 0.59 L min−1 (0.85) 0.38 mmHg mL−1 (0.35)

brDBP, HR, cfPWV 7.68 mmHg (0.94) 0.59 L min−1 (0.86) 0.38 mmHg mL−1 (0.32)

Table 9.   The t-statistics for the OLS regression coefficients. aSBP aortic systolic blood pressure; CO cardiac 
output; Ees end-systolic elastance; brSBP brachial systolic blood pressure; brDBP brachial diastolic blood 
pressure; HR heart rate; cfPWV carotid-to-femoral pulse wave velocity; EF ejection fraction.

Input feature

aSBP CO Ees

t-values p-values t-values p-values t-values p-values

Intercept − 31.296  < 0.001 − 22.304  < 0.001 − 60.951  < 0.001

brSBP 148.210  < 0.001 82.000  < 0.001 − 12.704  < 0.001

brDBP 11.241  < 0.001 − 51.739  < 0.001 32.673  < 0.001

cfPWV − 9.087  < 0.001 − 18.746  < 0.001 3.685  < 0.001

HR 16.776  < 0.001 47.129  < 0.001 21.960  < 0.001

EF  –  –  –  – 118.028  < 0.001

Table 10.   Distributions of the parameters of the in-vivo population (n = 783). a 65% of the remaining 
population declared to be smokers in the past.

Parameter

Value (n = 783)

Min Max Mean SD

Age (years) 28.00 88.00 60.83 11.47

Height (kg) 143.00 195.00 171.60 7.94

Weight (kg) 40.00 145.00 82.29 14.10

Heart rate (bpm) 41.00 107.00 64.06 10.65

Brachial systolic blood pressure (mmHg) 90.00 180.00 126.37 15.70

Brachial diastolic blood pressure (mmHg) 40.00 120.00 77.89 11.21

Central systolic blood pressure (mmHg) 82.00 172.00 117.95 15.18

Carotid-to-femoral pulse wave velocity (m s−1) 4.70 19.60 8.92 2.25

Hypertension 64%

Dyslipidemia 64%

Smokinga 23%

Renal transplant LD 1%

Renal transplant DD 0.3%

Breast cancer 2%

Coronary artery disease 81%
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Figure 6.   Comparison between predicted and reference clinical data. Scatterplots and Bland–Altman plots 
between: the predicted aSBP and the reference aSBP for SVR trained using in-silico data (A, B), and for SVR 
trained using in-vivo data (C, D). The solid line of the scatterplots represents equality. In Bland–Altman plots, 
the limits of agreement (LoA), within which 95% of errors are expected to lie, are defined by the two horizontal 
dashed lines.

Table 11.   Regression statistics between model predicted aSBP and reference aSBP. The input features include 
brSBP, brDBP, HR, and cfPWV. The testing set consists of in-vivo data only. R2 coefficient of determination; r 
correlation coefficient; RMSE root mean squared error; nRMSE normalized RMSE; MAE mean absolute error; 
SVR Support Vector Regressor; n.s. not significant; SD standard deviation.

SVR (tested using in-vivo 
data) Slope Intercept (mmHg) r R2 p-value RMSE (mmHg) nRMSE (%) MAE (mmHg)

Model trained using in-silico 
data 0.99 2.94 0.94 0.88  < 0.001 5.34 5.93 4.10

Model trained using in-vivo 
data 1.00 0.31 0.97 0.94  < 0.001 3.53 ± 1.27 5.26 ± 2.30 2.74 ± 1.14

Table 12.   The t-statistics for the OLS regression coefficients. aSBP aortic systolic blood pressure; brSBP 
brachial systolic blood pressure; brDBP brachial diastolic blood pressure; HR heart rate; cfPWV carotid-to-
femoral pulse wave velocity

Input feature

aSBP

t-values p-values

Intercept 6.504  < 0.001

brSBP 91.182  < 0.001

brDBP 12.094  < 0.001

cfPWV 3.296  < 0.001

HR − 18.110  < 0.001
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report of several other approaches, we did not explore other ensemble learning techniques. Such an extensive 
exploration of different ensemble techniques would be out of the scope of this study.

Following the in-silico validation, in-vivo validation was performed only for the aSBP. The aSBP predictions 
were found to be precise in the both investigated scenarios, i.e., SVR trained with in-silico data, and SVR trained 
with in-vivo data. The accuracy was slightly higher in the second scenario despite the smaller size of the training 
dataset. This is expected if we consider that the in-vivo data may contain more physiologically relevant content 
and thus be more informative compared to the in-silico data in the training of the model. Interestingly, the 
hyperparameter tuning led to the same selection for the hyperparameters C = 100 (selected 100% of the times) 
and gamma = 0.001 (selected 100% of the times) when the SVR model was validated using the in-vivo popula-
tion. These findings may verify that the in-silico predictive models can be rather informative for the design of 
clinical studies.

The principal reason that brSBP, brDBP, HR, and cfPWV were selected as the model inputs was the simplicity 
of their measurement in a clinical setting. Brachial cuff pressure constitutes a readily available and cost-efficient 
measurement in traditional medicine. At the same time, the use of pressure-based cfPWV is steadily increasing, 
as a result of numerous studies demonstrating its importance as an independent predictor of cardiovascular 
disease43–45. The convenience and the cost-efficiency of the aforementioned measurements render them suitable 
for easy, noninvasive, regular medical check-ups.

Based on the feature importances’ assessment, the aSBP prediction was found to be determined mainly from 
the brSBP. The strong dependency between aSBP and brSBP errors is to be expected, given that the two values 
are strongly related to mean BP, which is practically the same in both the aorta and the brachial artery. Moreover, 
brSBP seemed to be a significant predictor of CO. Resistance, and thus mean BP, is a strong determinant of CO. 
Given that brSBP is related to mean BP, this means that brSBP is indirectly related to CO. In addition, cfPWV 
is a measure of arterial compliance, which is also determinant of stroke volume and thus CO. Finally, EF and 
Ees have been reported to be positively correlated46 and this further explains the high importance level of EF for 
predicting Ees. The results using different subsets of the input features further verified each feature’s contribution 
to the predictions of the target output variables.

Prior work proposed by Xiao et al.47 used an artificial neural network (ANN) to predict aSBP from inva-
sive radial SBP and DBP, and HR. The differences between the predicted aSBP and the measured aSBP were 
found to be low and equal to − 0.30 ± 5.90 mmHg. Despite providing accurate results, invasive radial BP is not 
commonly measured on a regular basis, and thus its modelling imposes a substantial limitation on the clinical 
application of their proposed model. When an ANN with the same configuration, as the one reported in the 
study of Xiao et al., was employed to estimate aSBP in our study, the results indicated a similarly good predic-
tion performance. Concretely, the employment of the ANN using only the in-silico data (n = 4,018) achieved an 
RMSE = 3.79 ± 1.88 mmHg and r = 0.99 (p < 0.001). Training/testing the ANN with only the in-vivo data (n = 783) 
achieved an RMSE = 3.38 ± 1.09 and r = 0.97 (p < 0.001). In the case of the in-vivo data, we observed that the 
accuracy is slightly improved by the use of ANN compared to the best performing configuration (SVR achieved 
an RMSE = 3.53 ± 1.27 mmHg, r = 0.97, p < 0.001).

In general, the majority of previous aSBP estimators relies on features extraction from the pressure 
waveforms47,48. In our approach, apart from peripheral SBP and DBP, and HR, we incorporated the cfPWV 
measurement. The idea was that cfPWV being an index of aortic stiffening would improve the performance of 
the model and strengthen the clinical relevance of our results. However, feature importances indicated that brSBP 
may be sufficient for estimating aSBP. Using only brSBP, brDBP, and HR as inputs would not alter significantly 
the accuracy of the estimation of aSBP (using the in-silico data); namely, the RMSE would slightly increase from 
3.13 to 3.31 mmHg for the best performing model. In the case that only brSBP and brDBP were used as input 

Figure 7.   Correlation matrix for the in-vivo database.
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features, the accuracy would deteriorate with a RMSE of 3.46 mmHg which could still be acceptable. The use of 
only brSBP as an input, however, would essentially increase the error at 5.33 mmHg. For the clinical dataset, the 
same errors were equal to 3.52 mmHg (brSBP, brDBP, HR as inputs) and 4.11 mmHg (brSBP, brDBP as inputs). 
Finally, using only the brSBP predictor would lead to an RMSE = 4.20 mmHg.

In addition to prediction models for aSBP, estimation of CO from arterial BP characteristics has been a fertile 
area of research. Dabanloo et al.25 has evaluated the performance of neural networks in predicting CO from 
invasive arterial pressure waves. Upon comparison between the predicted CO and thermodilution-derived CO, 
their best performing model provided a mean absolute error equal to 0.54 L min−1 and a correlation coefficient 
of 0.89. Nevertheless, their model made use of the entire pressure waveform, from which input features were 
extracted, whereas it provided only an uncalibrated estimation of CO rather than its absolute value.

The results presented in this study are also compliant with the findings of Bikia et al.49, who suggested that 
brachial BP and cfPWV can be used to predict central SBP and CO (RMSE equal to 2.46 mmHg and 0.36 L min−1, 
respectively). Following an inverse problem-solving approach, a generalized model of the cardiovascular sys-
tem was adjusted to quasi- patient-specific standards using measurements of brSBP, brDBP, HR, and cfPWV. 
Additional geometrical information on the aortic diameter size of each subject was also integrated. The aortic 
diameter was approximated using previously published age- and BSA-related data50. A similar approximation of 
the aortic geometry could be embedded in the present study and improve the accuracy of the results. Therefore, 
employment of machine learning on clinical data could be further reinforced with the inclusion of additional 
input features such as age, height, and weight. However, given that the errors are already rather low, it is not 
anticipated that such an improvement would be of particular clinical significance.

Additionally, this study aimed to effectively predict Ees while utilizing a small number of required inputs. 
Chen et al.26 proposed a method to estimate Ees from cuff pressure, stroke volume, and EF. Their method provided 
accurate predictions of Ees with differences equal to 0.43 ± 0.50 mmHg mL−1. In contrast to Chen’s approach, we 
excluded stroke volume from our input vector and, on the other hand, we introduced cfPWV which constitutes 
an index of aortic stiffness and thus a powerful index of arterio-ventricular coupling51. In an attempt to remove 
EF from the set of inputs, Ees was found to be poorly predicted. This underachieving performance may be rather 
expected given that a specific combination of brachial SBP and DBP, and cfPWV might not be unique for only 
a particular Ees value. Importantly, our study emphasized on the significance of EF in accurately predicting Ees.

The use of EF is further encouraged from the fact that EF constitutes a noninvasive parameter which can be 
derived via several cardiac imaging modalities. The Simpson’s method52 has been the most commonly used tech-
nique; however, it might underestimate EF when compared to the magnetic resonance imaging (MRI), which has 
been shown to be the gold standard noninvasive technique for assessing LV function and thus EF53. Of course, the 
latter are not considered as convenient and cost-efficient as a cuff- or tonometry-based pressure measurement. 
It is likely that the EF-related information may be derived from another measured parameter which is directly 
or indirectly related to the cardiac contractility, e.g. electrical signals of cardiac events54. Further investigation 
towards this direction will be conducted in future work.

It should be noted that the aim of the current study is not to propose necessarily a tool that could provide 
simultaneous predictions of aSBP, CO, and Ees. The models developed in this study could be considered as 
independent predictors for each of the target parameters in different clinical occasions. In particular, aSBP and 
CO are major hemodynamical indices that are often useful to the clinician and their noninvasive estimation is 
highly desirable in a routine clinical examination. On the other hand, Ees is less often required. Currently, Ees is 
measured invasively with the acquisition of the left ventricular pressure–volume loops. The invasive nature of 
this technique severely limits the use of Ees in clinical practice.

The booming of data has led to efforts of transferring one type of information to another using machine 
learning models. Specifically, in relation to patho-physiology, the advancement on measuring and imaging tech-
niques has encouraged the employment of machine learning for estimating clinical pathophysiological indices 
and validating their results. This promising area of research could not exclude applications on cardiovascular 
health25,47,55,56. High correlation between peripheral pressure and central aortic pressure indicates the potential to 
estimate the latter from the former. However, the correlations for a complete set of cardiovascular variables have 
not been thoroughly investigated. In this work, we performed a first study to elucidate which input parameters 
(noninvasive measurements) are considered necessary when machine learning is employed for predicting aortic 
hemodynamics and contractility index (invasive measurements). A major advantage of the present study pertains 
to the well-balanced dataset that was used for the training/testing scheme. The use of synthetic data allowed for 
covering a wide range of hemodynamical characteristics, whereas it provided us with access to cardiovascular 
quantities which are difficult to obtain noninvasively in the real clinical setting, i.e., aortic BP or Ees.

Cardiovascular models have attracted great interest due to the increasing impact of cardiovascular disease. 
They have provided a valuable alternative for the assessment of pressure and flow in the entire arterial network 
providing additional pathophysiological insights, which are difficult to acquire in-vivo. Numerous previous 
studies have used in-silico data for the estimation of aortic BP, cardiac output, aortic PWV and many more56–60. 
Importantly, in-silico studies allow for the preliminary evaluation of predictive models across a wide range of 
cardiovascular parameters61 in a quick and cost-efficient way, while their results can be rather informative of 
the design of clinical studies62,63.

Several limitations need to be acknowledged. The data used for the training/testing scheme were derived 
from a simulator instead of a real human population. While synthetic data can mimic numerous properties of 
the real clinical data, they do not copy the original content in an identical way. Nevertheless, the goal here was 
to define the minimum necessary input information that is required to estimate aortic hemodynamics and Ees. 
Thus, despite that the use of synthetic data might not lead to exactly the same results with the results coming 
from clinical data, it should not undermine the reliability of the study’s findings. The latter has been verified by 
the in-vivo validation of our aSBP estimations. Clinical validation was not possible for the CO and Ees estimators, 
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due to the lack of the respective data. At the initial stage of our research, we found it reasonable to start with an 
in-silico validation of our predictive models, instead of collecting measurements of CO and Ees in a large cohort. 
In addition, the cost and the complexity of the respective measurements would make it difficult to incorporate 
them in the current study. Future work should include the use of real-world data for all parameters that will 
finally verify the application of the proposed method in the clinical setting. Finally, the proposed models have 
been designed and tested on data coming from a generalized model of the cardiovascular system which was 
developed according to published data28. Hence, the precision of the predictions might be compromised in the 
case of pathological conditions, such as atherosclerosis, aneurysm or aortic valve disease. It is of great importance 
that in-vivo validation of the models should be conducted using pathological clinical data as well.

In summary, this study showed that the use of noninvasive arm-cuff pressure and PWV alone potentially 
allows for the estimation of aSBP and CO with acceptable accuracy. This might not be the case for Ees prediction. 
Nevertheless, the estimated Ees can be greatly improved when EF is used as an additional input in the prediction 
model. Following validation on in-vivo invasive data, this approach may provide a promising potential in the 
prediction of aortic hemodynamics and left ventricular contractility using unintrusive, readily available standard 
clinical measurements.

Methods
A regression pipeline was applied for estimating aortic hemodynamics and LV contractility index. The sche-
matic representation of the methodology is presented in Fig. 1. The input data comprised brSBP, brDBP, HR, 
cfPWV, and EF for every subject. These data were fed to the regression models to estimate aSBP, CO, and Ees. 
First, brSBP, brDBP, HR, and cfPWV were used as input predictors for all three outputs, i.e., aSBP, CO, and Ees. 
A second regression analysis was performed using EF as an additional input feature only for the estimation of 
Ees. The outputs of each testing set were blinded and kept as the ground truth against which our predictions 
were later compared.

Brief description of the in‑silico model of cardiovascular dynamics.  In the present study, we used 
a 1-D in-silico model of the cardiovascular system, that has been previously described and validated against 
in-vivo data28,29. The arterial tree includes the main arteries of the systemic circulation, as well as the cerebral 
circulation and the coronary circulation. In summary, the governing equations of the model are derived by inte-
grating the longitudinal momentum and continuity equations over the arterial cross section. Pressure and flow 
are acquired across the arterial tree by solving the governing equations employing an implicit finite-difference 
scheme. Local arterial compliance is calculated, provided that pulse wave velocity (PWV) is approximated as an 
inverse power function of the arterial lumen diameter28. Three-element Windkessel models64 are coupled to the 
distal vessels to account for the peripheral resistance. The contractility of the LV is modeled using a time-varying 
elastance model4,9. This elastance model considers a linear ESPVR characterized by its slope, the end-systolic 
elastance (Ees), and its intercept, the dead volume, Vd, as well as a linear end-diastolic pressure–volume relation 
characterized by its slope, the end-diastolic elastance (Eed).

Synthetic population generation.  A database of 4,018 synthetic hemodynamic cases was created. The 
1-D cardiovascular model ran using different combinations of arbitrary input parameters. The distributions of 
the input parameters were based on physiologically relevant data from the literature. The cardiovascular param-
eters were chosen to represent healthy individuals. Due to the limited amount of probabilistic information, the 
sampling was selected to be random Gaussian. The values of Ees and Eed ranged within [1.03, 3.50] mmHg mL−1 
and [0.05, 0.20] mmHg mL−1, respectively65–67. HR varied between 60 and 100 bpm. The LV filling pressure lied 
between 7.00 and 23.00 mmHg according to68. The dead volume (Vd) and the time of maximal elastance (tmax) 
were kept unchanged. Their selected values were equal to the mean values of Vd = 15.00 mL and tmax = 340.00 ms 
as reported by previously published works28,69. Arterial geometry was modified to simulate different body types 
by adapting the length and the diameter of the arterial vessels. The heights covered a range of [150.00, 200.00] 
cm while the limits for aortic diameter were set to [1.90, 4.00] cm50,70. Total peripheral resistance varied within 
0.50–2.00 mmHg s mL−171. Total arterial compliance was chosen within the range of [0.10, 3.80] mL mmHg−1 in 
order to account for a wide range of different values of arterial tree stiffness72,73. It should be noted that evidence 
of nonuniform aortic stiffening was integrated for the elderly and hypertensive virtual subjects, following the 
methodology described by Bikia et al.49.

Virtual Database.  The parameters of interest were estimated from the 1-D model-derived pressure and 
flow waves (simulation’s outputs). Concretely, synthetic brSBP, brDBP as well as HR data were obtained from the 
pressure wave at the left brachial artery. Similarly, aSBP was derived from the pressure waveform at the aortic 
root. CfPWV was derived using the tangential method74. The method computed the intersection (foot) of two 
tangents, i.e., the line passing tangentially through the systolic upstroke and the horizontal line passing through 
the point of minimum pressure. Subsequently, the pulse transit time was estimated between the foot of the wave 
at the two sites, namely, between the carotid artery and the femoral artery. The length between the two arterial 
sites was calculated by summing the lengths of the arterial segments within the transmission path. Finally, the 
cfPWV was estimated by dividing the arterial length of the path by the pulse transit time. Given that the ESPVR 
was known, the EF was derived by dividing the blood volume that is ejected within each heartbeat, i.e., the stroke 
volume (SV), by the end-diastolic volume (EDV). The value of the Ees was defined as the slope of the ESPVR. 
Then, all simulated information was discarded, except for the “measured” brSBP, brDBP, HR, cfPWV, and EF 
(inputs) and the aSBP, CO, and Ees data (outputs). The total dataset (organized in pairs of inputs and outputs) 
was kept for the training/testing process.
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Blending the dataset with random noise.  The synthetic data were corrupted with random noise in 
order to represent a more realistic data collection. The introduced noise was equivalent to a random relative 
error within the range of [− 6.00, 6.00] % with respect to the actual value. This magnitude of error was selected 
based on published data from previous studies75.

Clinical database.  For the clinical validation of the aSBP estimations, we used clinical data from 783 
subjects who underwent noninvasive cardiovascular assessment for research purposes, at the First University 
Department of Cardiology (Hippokration General Hospital, Athens, Greece). Anonymized data were analyzed 
in compliance with the Declaration of Helsinki of the World Medical Association and the National Regulations 
for clinical research.

The carotid-to-femoral pulse wave velocity (cfPWV) was measured in every subject as previously 
described76–78. In brief, cfPWV measurement was performed using the SphygmoCor apparatus (AtCor Medical 
Pty Ltd, West Ryde, Australia). First, short-term continuous arterial pressure waveforms were recorded by use of 
a hand-held tonometer (Millar, Houston, USA), simultaneously with ECG acquisition (for the synchronization 
of the continuous pressure waves recorded at the carotid and the femoral artery). Then, the recorded pressure 
waveforms were processed by proprietary software that automatically computes pulse transit time from the 
carotid to the femoral artery using the tangential method 74. Finally, cfPWV was calculated by the ratio of the 
distance between the two recording sites (calculated as the length from the suprasternal notch to femoral artery 
minus the length from the carotid artery to the suprasternal notch) to the pulse transit time. CfPWV measure-
ments were performed with the subject at the supine position after 5 min resting period.

Noninvasive estimation of the aortic pressure waveforms was performed by the SphygmoCor System (AtCor 
Medical Pty Ltd), as previously described79,80. Radial pressure waves were first recorded by applanation tonom-
etry and central pressure waves were derived by use of validated transfer functions81. Multiple recordings were 
performed in every subject to accomplish optimal quality control criteria (quality index: > 85%). Calibration of 
the recorded pulse waves was performed using the brachial systolic and diastolic BPs, which were measured by 
cuff sphygmomanometry. The accuracy of this apparatus has been previously evaluated by comparing the esti-
mated aortic BPs with intra-aortic catheter-based BP measurements79. Furthermore, the reproducibility of this 
technique has been also found to be acceptable under several different conditions and populations82.

Regression analysis.  Four regression models were trained/tested to estimate the corresponding target 
outputs. The models that were employed were Random Forest33, SVR34, Ridge35, and Gradient Boosting36. By 
definition, a regression model comprises the following components: (i) the unknown hyperparameters, β, (ii) 
the independent variables, Xi, and (iii) the dependent variable, Yi. In this analysis, the objective was to investigate 
whether the regression model can estimate aSBP, CO, and Ees from single-beat input predictors (brSBP, brDBP, 
HR, cfPWV, (EF)). The training/testing scheme was based on a tenfold CV scheme83 (Fig. 8). Concretely, all 
cases were divided into ten equal sets in a random manner. In each fold, one set was left out being the testing 
group, and the rest of sets were used as the training group to tune the parameters of the models. Hyperparam-
eter tuning was performed internally in each fold using GridSearch with a tenfold CV in order to optimize the 

Figure 8.   Representation of the experimental design for the evaluation of every regression model. The model 
evaluation of was done using tenfold cross validation (CV) (external CV). In every external fold, we performed 
hyperparameter tuning with tenfold CV (internal CV).
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β parameters of each fold’s model (Fig. 8). The hyperparameters that were chosen to be optimized are reported 
in the Table 13. The hyperparameters’ values that are not reported in Table 13 were set to their default value. 

We investigated two approaches: (i) one to predict aSBP, CO, and Ees using brSBP, brDBP, HR, and cfPWV, 
and (ii) a second one to predict solely Ees using brSBP, brDBP, HR, cfPWV, and EF. Consequently, we evaluated 
the accuracy of each regression model for every target variable on a subject level. Additionally, averaging of the 
multiple predictions was tested as an ensemble learning approach. The training/testing pipeline was implemented 
using the Scikit-learn library84 in a Python programming environment. The pandas and numpy packages were 
also used85,86.

In‑silico validation of the model‑derived predictions.  We first assessed the performance of each 
regression model for every target variable on a subject level for the virtual population. Ten-fold CV as described 
above was used to evaluate the accuracy of the trained models. Moreover, we calculated the percentages of the 
cases whose aSBP errors met the international standards (< 5 ± 8 mmHg) of the European Society of Hyperten-
sion International Protocol37. The error threshold for CO was set to 0.3 and 0.5 L min−1 based on the objec-
tive criteria suggested by Critchley and Critchley87. Finally, given that the only clinically acceptable technique 
for measuring Ees is the invasive end-systolic pressure–volume relationship, there are not meta-analyses using 
Ees data. In this respect, for the Ees values within the range of [1, 4.5] mmHg  mL−1, thresholds of 0.05 and 
0.20 mmHg mL−1 should be adequate to provide an accurate estimation of Ees.

Sensitivity analysis for the training size.  In order to assess the effect of the number of training samples 
on our models’ accuracy, sensitivity analysis was performed. Concretely, the regression analysis was repeated 
after decreasing the training size from 95 to 15% of the total number of cases. For each training size, the predic-
tions were evaluated in terms of RMSE between the estimated and reference data. Hyperparameter tuning was 
implemented for each different training set under consideration.

In‑vivo validation of the model‑derived aSBP predictions.  Moreover, in-vivo validation was per-
formed only for the best performing aSBP estimator, i.e., SVR. The validation was realized in two steps. First, 
we trained/tested an SVR model using only in-vivo data following the experimental design described in Fig. 8. 
Consequently, an SVR model was trained with the totality of the in-silico data (n = 4,018) and, then, was tested 
on the in-vivo data (n = 783), as depicted in Fig. 9. During training, hyperparameter tuning was performed using 
GridSearch with tenfold CV.

Table 13.   List of the hyperparameters which were chosen to be optimized and their corresponding values.

Model Hyperparameters to be optimized Values

Random forest
max_depth {5, 10, 20}

n_estimators {500, 700, 1,000}

Support vector regressor
C {1, 10, 100}

gamma {0.001, 0.01, 0.1, 1}

Ridge alpha {1, 10, 100, 200}

Gradient boosting
learning_rate {0.01, 0.05, 1}

n_estimators {100, 500, 1,000, 1,750}

Figure 9.   Representation of the evaluation of the synthetically trained model against in-vivo data.
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Feature importance evaluation.  We assessed the importance of each input feature using the scores 
returned by the Random forest model. The average importance of each feature was then calculated by averaging 
the scores from every fold k (k = 1, 2, … 10).

Statistical analysis.  The algorithms and the statistical analysis were implemented in Python (Python 
Software Foundation, Python Language Reference, version 3.6.8, Available at https​://www.pytho​n.org). We per-
formed OLS estimation of the regression coefficients using each of the target parameters, i.e., aSBP, CO, and 
Ees, as dependent variable and brSBP, brDBP, cfPWV, HR, and EF (only for Ees) as independent variables (using 
statsmodels library88). Hypothesis testing for each regression coefficient was realized using the t-stastistic. The 
agreement, bias and precision between the method-derived predictions and the real values were evaluated by 
using the Pearson’s correlation coefficient (r), the coefficient of determination (R2), the root mean square error 
(RMSE), and the normalized root mean square error (nRMSE). The computed nRMSE was based on the dif-
ference between the minimum and maximum values of the dependent variable. Bias and limits of agreement as 
described by89 were reported. The level of statistical significance was set at p < 0.05.

Data availability
The virtual database generated and analyzed in the present study is available from the corresponding author on 
a reasonable request.
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