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In-vivo assessment of aortic characteristic impedance (Zao) and total arterial compliance
(CT ) has been hampered by the need for either invasive or inconvenient and expensive
methods to access simultaneous recordings of aortic pressure and flow, wall thickness,
and cross-sectional area. In contrast, regional pulse wave velocity (PWV) measurements
are non-invasive and clinically available. In this study, we present a non-invasive method
for estimating Zao and CT using cuff pressure, carotid-femoral PWV (cfPWV), and
carotid-radial PWV (crPWV). Regression analysis is employed for both Zao and CT . The
regressors are trained and tested using a pool of virtual subjects (n = 3,818) generated
from a previously validated in-silico model. Predictions achieved an accuracy of 7.40%,
r = 0.90, and 6.26%, r = 0.95, for Zao, and CT , respectively. The proposed approach
constitutes a step forward to non-invasive screening of elastic vascular properties in
humans by exploiting easily obtained measurements. This study could introduce a
valuable tool for assessing arterial stiffness reducing the cost and the complexity of
the required measuring techniques. Further clinical studies are required to validate the
method in-vivo.

Keywords: non-invasive monitoring, aorta, arterial stiffness, vascular aging, machine learning

INTRODUCTION

Aging and vascular pathologies lead to changes in the elastic properties and the hemodynamics of
the arterial network (Laurent et al., 2001; Mitchell et al., 2010; Vlachopoulos et al., 2010; Redheuil
et al., 2011). These changes have been shown to be highly associated with increased cardiovascular
risk or mortality (Mitchell et al., 2010; Vlachopoulos et al., 2010). In this respect, the assessment
of the arterial stiffness is increasingly used in the clinical evaluation of a patient. Proximal aortic
characteristic impedance (Zao) and total arterial compliance (CT) are two powerful indices for
assessing the elastic properties of the proximal aorta and the entire arterial tree, respectively
(Mackenzie et al., 2002; Laurent et al., 2006).

The impedance can be defined as the ratio of the pulsatile components of pressure and flow.
The impedance computed in the ascending aorta is defined as input impedance (Zin), and is a
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global systemic parameter, which encompasses all effects of wave
travel and reflections of the arterial part which is distal to the
point of measurement. For a reflectionless system Zin reduces to
Zao. The Zao is a cardinal parameter related to aortic stiffness
and geometry. Prior art has included invasive (Nichols et al.,
1977, 1985; Pepine et al., 1978; Murgo et al., 1980; Gundel et al.,
1981; Merillon et al., 1984; Ting et al., 1986; Lucas et al., 1988;
Kelly and Fitchett, 1992; Kromer et al., 1992) and non-invasive
(Kelly and Fitchett, 1992; Mitchell et al., 2001; Segers et al.,
2007) techniques for estimating Zao in the frequency domain,
whereby Zao is approximated as the average Zin in the mid-to-
high frequency range, the underlying assumption being that in
those frequencies the effects of reflected waves are minimal. Other
approaches have proposed time-domain calculations of the Zao
based on the early systolic part of pressure and flow waveforms
(Dujardin and Stone, 1981; Li, 1986; Levy et al., 1988; Lucas et al.,
1988), when reflections are considered negligible. All of the above
frequency and time domain methods require pressure and flow in
the aorta, which can be obtained only invasively (pressure) or are
not easy in clinical practice (flow).

CT is a major global elastic property of the arterial system,
being a determinant of the cardiac afterload, and has significant
pathophysiological relevance (Safar and London, 1987; Chemla
et al., 2003; Haluska, 2006; Haluska et al., 2008). It quantifies
the capacity of the vessels to expand under internal pressure
and store blood during systole without excessive pressure rise.
Importantly, CT is a significant determinant of central blood
pressure and decrease in CT is associated with hypertension.
However, direct in-vivo non-invasive measurement of CT cannot
be performed. Various methods have suggested the indirect
estimation of CT (Liu et al., 1986; Segers et al., 1999; Stergiopulos
et al., 1999; Mackenzie et al., 2002) using simultaneous recordings
of the proximal aortic pressure wave (invasive) and flow
or cardiac output.

Precise measurement of the Zao and CT may increase
understanding of arterial physiopathology, and provide clinical
markers for cardiovascular risk and useful tools for treatment
monitoring. Yet, despite the significant body of research, the
invasive nature or/and the complexity of the current methods
have limited their applicability in every day clinical practice,
while other surrogates of regional arterial stiffness have been used
more often (Mackenzie et al., 2002; Sakuragi and Abhayaratna,
2010). Thus, a technique that offers a reliable, non-invasive,
fast, and simple-to-use estimation of Zao and CT is still
highly desirable. In view of this need, this study proposes a
novel methodology to evaluate Zao and CT using machine
learning (ML).

In our previous work, we demonstrated that the combination
of in-silico data with ML modeling allows for validating a
methodology for predicting aortic hemodynamics and cardiac
contractility (Bikia et al., 2020b). This approach can be
easily extended and adapted in the estimation of different
cardiovascular quantities and case studies, such the one
introduced in this work. Concretely, this paper proposes
a method which derives Zao and CT from brachial blood
pressure (cuff BP) and regional PWV measurements, while
it does not require central BP or flow values. To assess

the validity of this concept, the introduced methodology
was tested using an in-silico population generated by a
previously validated cardiovascular simulator. The schematic
representation of the regression pipeline is illustrated in
Figure 1.

MATERIALS AND METHODS

In-silico Database
In this study, we used a synthetic database which was
designed to simulate various hemodynamical states. Different
hemodynamic cases (n = 3,818), representing both normotensive
and hypertensive adults, were simulated by altering key cardiac
and systemic parameters of a previously validated in-silico
cardiovascular model. The mathematical model (Figure 2)
has been well described in the original publication (Reymond
et al., 2009). Literature data are only presented in terms of
mean and standard deviation or/and minimum and maximum
values; thus, variation of the model’s parameters was performed
with random Gaussian sampling. Cardiac parameters were
modified and different cardiac output values were simulated.
Arterial geometry (i.e., arterial length and diameter) was
modified to represent various arterial tree sizes and body types
(Wolak et al., 2008; Devereux et al., 2012). Total peripheral
resistance and arterial compliance were altered according to
the literature (Langewouters, 1982; Lu and Mukkamala, 2006;
Segers et al., 2008). To simulate older or hypertensive individuals,
in some cases, stiffening in the aorta was considered as non-
uniform and more pronounced as described in our previous
works (Pagoulatou et al., 2019; Bikia et al., 2020a). For a
given set of input parameters, the model provides analytical
solutions of the pressure and flow at every arterial segment.
The physiological validity of each subject was assessed by
comparing the simulated brachial and aortic systolic BP
(SBP), DBP, MAP, and pulse pressure (PP) to the reference
values reported in the previously published data by McEniery
(McEniery et al., 2005) (normotensive cases) and Bordin Pelazza
and Filho (Bordin Pelazza and Filho, 2017) (hypertensive
cases). A subject was removed from the dataset if any of
the BP values lied out of the 99.5% confidence intervals
(mean± 2.807 SD).

Computation of Zao and CT
The characteristic impedance at the root of the ascending aorta
was calculated analytically using the area compliance and the
geometry of the ascending aorta, namely:

Zao =

√
ρ

A
1

CA
, (1)

where ρ is the blood density equal to 1,050 kg/m3,
A is the cross-sectional area of the ascending aorta,
and CA is the area compliance of the ascending aorta,
respectively.

The CT was computed as the sum of volume compliance (ci) of
all the arterial segments (n = 103) included in the 1-D model and
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FIGURE 1 | Schematic representation of the training/testing pipeline for predicting aortic characteristic impedance (Zao), and total arterial compliance (CT ). SBP,
systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; cfPWV, carotid-femoral pulse wave velocity; crPWV, carotid-radial pulse wave velocity.

FIGURE 2 | The 1-D cardiovascular model (Reymond et al., 2009) that was used for the data generation.
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the terminal compliances described by the terminal Windkessel
models, namely:

CT =

103∑
i

ci (2)

Regional PWVs and BP Data
The carotid-femoral pulse wave velocity (cfPWV) and carotid-
radial pulse wave velocity (crPWV) were calculated by a foot-
to-foot algorithm using the tangential method (Vardoulis et al.,
2013). Pulse transit times were computed between the two arterial
sites, namely, the left carotid and left femoral artery, and the
left carotid and the left radial artery, respectively. Formally, the
tangential method uses the intersection point of two tangents
on the arterial pressure wave, i.e., the tangent passing through
the systolic upstroke and the horizontal line passing through the
minimum of the pressure wave as previously described (Vardoulis
et al., 2013). The travel lengths were determined by summation
of the lengths of the arterial segments within the transmission
paths. Next, the value of each PWV was calculated by dividing
the total travel length by the pulse transit time. Brachial systolic
(brSBP) and diastolic BP (brDBP) were derived from the pressure
waveform at the left brachial artery.

Regression Analysis
The simulated data, i.e., brSBP, brDBP, heart rate (HR), cfPWV,
crPWV, Zao, and CT , were organized in pairs (inputs: brSBP,
brDBP, HR, cfPWV, crPWV, and outputs: Zao, CT) and were
kept for the training/testing process. All the data were corrupted
with artificial noise in order to simulate potential measurement
errors that often occur in the respective clinical measurements.
The noise allows for essentially harming the deterministic effect
of the 1-D computer model. Errors in measurements were
simulated with a random distribution. Concretely, the error
for each variable was randomly drawn from the range of
[–15, 15]% (simulating a maximum noise level equal to ± 15%).
Subsequently, each variable value was multiplied with a noise
factor; for instance, for a randomly selected error of –6%,
the respective variable value was multiplied with a noise
factor equal to 0.94.

The data were partitioned into three subsets: (i) the train
set, the set of training examples the model is trained on, (ii)
the validation set, which is used to tune the hyperparameters,
and (iii) the test set, which is used to test the trained model
while it measures the generalization performance. In our analysis,
the train/validation/test split was selected to be 60/20/20%.
These percentages corresponded to 2,290/764/764 data instances,
respectively. The train and test sets were normalized using
MinMaxScaler() function from sklearn library. For the regression
process, we used a Random Forest modeling procedure (Liaw
and Wiener, 2002) and an Artificial Neural Network (ANN) to
estimate the target variables of interest.

The formal structure of the Random Forest Regressor (RFR) is
shown in Figure 3. Concretely, an RFR is a predictor consisting
of a collection of randomized base regression trees. These random
trees are combined to form the aggregated regression estimate

r̄n(X) = E2[rn(X, 2)],

where E2[.] denotes expectation with respect to the random
parameter, conditionally on X (matrix consisting of the input
features), and 2 = [21, . . ., 2N] are independent and identically
distributed (i.i.d.) random variables outputs of each tree.
The estimations were provided by aggregating the individual
predictions of each tree. The trees were grown by applying
bootstrapping. Based on the training data, each regression
tree grew for each of the bootstrap samples. Estimators were
randomly sampled and the best split was chosen at each node.

A formal representation of an ANN is illustrated in Figure 4.
Our ANN was composed of an input layer, a hidden layer, and an
output layer. Typically, the input layer sequentially receives the
input features as an input vector into the ANN. The hidden layer
has multiple neurons connected to the input layer with weights.
Each neuron is characterized by a transfer function of neuron
(Figure 4). The training of ANN is conducted by determining the
difference between the processed output of the network and the
target output, namely, the error. Training data are fed to the input
layer and continue to the succeeding hidden layer, where they
pass through the neurons’ transfer functions, until they finally
arrive radically transformed at the output layer. During training,
the network continually adjusts its weights and thresholds until
the ANN produces output which is increasingly similar to the
target output (errors are minimized). In our analysis, the training
set was employed to optimize the weights of neurons in the
hidden and output layer using the “Adam” optimizer (Kingma
and Ba, 2017). Upon tuning, the samples of the test set were
used as input to the optimized ANN to obtain the estimated
Zao and CT .

A critical issue while training a ML model on the sample data
is overfitting. For instance, when the number of epochs used to
train an ANN is more than necessary, the training model learns
patterns that are specific to the sample data to a great extent.
In that case, the model is incapable to perform well on a new
dataset. In other words, the model loses generalization capacity
by overfitting to the training data. To mitigate overfitting and to
increase the generalization capacity, the model should be trained
for optimal hyperparameter values.

For the RFR, we selected 100 estimators (namely, the number
of trees in the forest), while we decided to optimize the value
for max_depth (the maximum depth of the tree). For the ANN,
the batch_size (the number of samples that will be propagated
through the network) was set to be equal to 10, and the number
of epochs was optimized, respectively. The number of epochs
is a hyperparameter that defines the number of times that the
learning algorithm will work through the entire training dataset.
By optimizing only one hyperparameter, we keep the complexity
of the models low, and thus the models are more likely to perform
well on new data and are less restricted to the peculiarities of the
particular data used.

For selecting the optimal value for max_depth, we calculated
the train score and the validation score for various values of
max_depth in the range of [1, 10]. The score for RFR indicates the
coefficient of determination R2 for the predictions. Subsequently,
for each target output variable, the max_depth value with the
maximum score was selected. In a similar manner, the train and
validation losses [i.e., mean square error (MSE)] were calculated
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FIGURE 3 | Typical representation of a random forest regressor.

for the ANN. In that case, loss values can be monitored by Early
stopping call back function. When there is an increment observed
in loss values, training comes to halt and the respective value of
epoch indicates the optimal selection. For both Zao and CT , the
highest accuracy was reported for the RFR with max_depth = 8,
whereas for ANN, training stopped at 55th epoch and 103rd
epoch for Zao and CT , respectively. Therefore, the optimal
number of epochs was set to 55 and 103, for the two estimators,
respectively. All optimized hyperparameters are aggregated in
Table 1. Subsequently, we plotted the respective learning curves
for the RFRs using the optimal hyperparameters (Figures 5A,B).
Each learning curve was fitted using the observed accuracy [in

terms of root mean square error (RMSE)] according to a given
training sample size. The training size was modified from 1 to
95% of the total number of training data instances (20 samples of
training size). The training error was low, and thus the training
data appear to fit well by the models (low bias). Furthermore, low
variance was indicated by the small gap between the two curves.
Finally, the testing set was fed into the trained RFR to estimate
Zao, and CT and the precision was evaluated.

Along with the main model configuration, which uses as
inputs brSBP, brDBP, HR, cfPWV, and crPWV (M1), we
additionally evaluated three additional model configurations
using different sets of inputs: (i) one which does not include HR
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FIGURE 4 | Typical representation of an artificial neural network.

as an input (M2), (ii) a second one that excludes HR and replaces
brSBP and brDBP with MAP (M3), and (iii) a third one that uses
only the PWV values (M4). The hyperparameters values were set
equal to the same values as those of M1.

Furthermore, we assessed the importance of each input feature
using the permutation feature importances (Breiman, 2001) for
RFR. The concept of permutation feature importances relies

TABLE 1 | List of the selected hyperparameters for the predictive models.

Output variable Selected hyperparameters

RFR: max_depth ANN: epochs

Zao 8 55

CT 8 103

RFR, Random Forest Regressor; Zao, aortic characteristic impedance; CT , total
arterial compliance.

on measuring the importance of a feature by calculating the
increase in the prediction error after permuting the feature. The
permutation importances were computed by shuffling the values
of each feature on the test set and by estimating the RMSE
after the permutation. This process was repeated 20 times and
the mean and standard deviation of the increase in RMSE were
reported.

The training/testing pipeline and the post-analysis were
implemented using the Scikit-learn library (Pedregosa et al.,
2011) in a Python programming environment (Python Software
Foundation, Python Language Reference, version 3.6.8, Available
at http://www.python.org). The Pandas and NumPy packages
were also used (Oliphant, 2006; McKinney, 2010).

Sensitivity to Training Data Size
The number of data instances used for training, namely, the
training size, has a major effect on the accuracy of the model’s
predictions. The model’s precision as a function of the number of
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FIGURE 5 | Learning curves presenting the impact of the number of data instances on the RFR’s performance for Zao (A) and CT (B).

training samples was evaluated by conducting sensitivity analysis.
In this respect, the regression analysis for RFR was repeated
and the RMSE was calculated after decreasing the training size
(n = 2,290) from 99 to 1% of the total number of cases. The
accuracy was assessed using the same testing population (764
subjects).

Comparison to Prior Art
We compared our RFR with prior methods that provide estimates
of Zao and CT . Application of previous methods required the
central (aortic) blood pressure and flow waves. Systolic and
diastolic phases were defined by the dicrotic notch from the
central blood pressure waveforms and the first zero crossing
for blood flow waves. Automated detection of the peaks and
minima was performed using an in-house custom software in
Matlab (Mathworks, Natick, Massachusetts, United States). The
Zao was computed using two previously described methods. For
this study, we used the following formulas:

1. Time-derivative peaks method: Zao = P’max/Q’max (13), where
P’max and Q’max are the maximum values of the pressure and
flow time derivatives, respectively.

2. Peak flow method: Zao = (PQmax–aDBP)/Qmax (13), where
aDBP is the aortic DBP, Qmax is the maximum flow value, and
PQmax is the aortic pressure magnitude at the maximum flow
value.

The CT was derived using the following previously proposed
techniques:

1. Decay time method: The decay time method (DTM) is based
on the two-element Windkessel (WK) model of the systemic
circulation. Its principle is that during diastole there is no
inflow from the heart, and thus, the decrease of aortic pressure,
is characterized by the decay time. This decay can be fitted
monoexponentially to any portion of the diastole to yield the
characteristic time or time constant, which is RCT . The CT can
be then calculated for a known value of peripheral resistance
(R) (Stergiopulos et al., 1995).

2. Pulse pressure method: The pulse pressure method (PPM)
(Stergiopulos et al., 1994) is based on the fact that the
modulus of the input impedance of the arterial system is
represented very well by the two-element WK model for
the low frequencies (1st–5th harmonic). Therefore, the pulse
pressure will be similar in the true arterial system and the
two-element WK model. The PPM uses an iterative process
that yields the value of CT that gives the best fit between the
measured pulse pressure and the pulse pressure predicted by
the 2-element WK model.

We applied the aforementioned methods on the test data
(n = 764) and compared the estimates to the ML-derived
predictions. The reason that we did not apply the above methods
to the entire dataset was to compare these methods and the ML
model on the exact same test population. Artificial random noise
of the same order of magnitude (±15%) was also considered
for the data used for the techniques above. The pressure and
flow signals were uniformly multiplied by a scaling factor
which was randomly selected as described in the Regression
analysis section.

Statistical Analysis
Data are presented as mean and standard deviation (SD). The
agreement, bias, and precision between the model predictions
and the reference values were assessed by using the Pearson’s
correlation coefficient (r), the RMSE, the normalized RMSE,
and the Bland-Altman analysis (Bland and Altman, 1986). The
nRMSE was based on the difference between the minimum
and maximum values of the dependent variable (y) and was
computed as RMSE/(ymax–ymin). We performed linear least-
squares regression for the predictions and the reference data.
The slope and the intercept of the regression line were
reported. Two-sided p-value for a hypothesis test whose null
hypothesis is that the slope is zero, using Wald Test with
t-distribution of the test statistic, was calculated. The p < 0.05
were considered as significant. The statistical analysis was
implemented in Python (Python Software Foundation, Python
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Language Reference, version 3.6.8, Available at http://www.
python.org).

RESULTS

The distributions of the cardiovascular parameters of the virtual
study cohort are presented in Table 2. The correlations between
the input features and the target output values are also given in
Table 3. The highest values of Pearson’s correlation coefficient
were reported between Zao/CT and the two PWV values
(r ≥ 0.84).

TABLE 2 | Summary of the virtual study cohort (n = 3,818) cardiovascular
characteristics.

Variable Mean ± SD

Entire population n = 3,818

Brachial SBP [mmHg] 134.51 ± 24.1

Brachial DBP [mmHg] 77.27 ± 21.31

Brachial PP [mmHg] 57.24 ± 22.58

MAP [mmHg] 94.51 ± 20.29

Aortic SBP [mmHg] 122.54 ± 23.73

Aortic DBP [mmHg] 80.5 ± 21.48

Aortic PP [mmHg] 42.04 ± 19.38

Stroke volume [mL] 81.18 ± 8.03

Heart rate [bpm] 73.26 ± 14.9

Aortic impedance [mmHg.s/mL] 0.056 ± 0.012

Total arterial compliance [mL/mmHg] 1.14 ± 0.47

Total peripheral resistance [mmHg.s/mL] 0.98 ± 0.21

Carotid-femoral PWV [m/s] 8.06 ± 1.03

Carotid-radial PWV [m/s] 10.17 ± 1.3

SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood
pressure; PP, pulse pressure; MAP, mean arterial pressure; PWV, pulse wave
velocity.

TABLE 3 | Correlation coefficients between the input regression features and
the target outputs.

Parameters Value (n = 3,818)

Correlation coefficient

brSBP/Zao 0.51

brDBP/Zao −0.41

HR/Zao 0.17

cfPWV/Zao 0.87

crPWV/Zao 0.85

brSBP/CT −0.48

brDBP/CT 0.39

HR/CT −0.16

cfPWV/CT −0.87

crPWV/CT −0.84

Highest correlation values are presented in bold. brSBP, brachial systolic blood
pressure; brDBP, brachial diastolic blood pressure; HR, heart rate; PWV, pulse
wave velocity; cfPWV, carotid-femoral PWV; crPWV, carotid-radial PWV; Zao, aortic
characteristic impedance; CT , total arterial compliance.

Comparison of Model Predictions to the
Reference Values
We compared the RFR and ANN estimations to the reference
data for each target output. Table 4 tabulates the metrics for
the performance assessment of the evaluation scheme for all
model configurations. The results for the RFR M1 and ANN
M1, which correspond to the best-performing configurations, are
visualized below. The scatterplot between the RFR-predicted and
the actual Zao values are given in Figure 6A (top panel). The
Bland-Altman plot is provided in Figure 6A (lower panel), in
which zero bias was reported. The limits of agreement (LoA),
within which 95% of errors are expected to lie, were found
to be equal to ± 0.012 mmHg.s/mL. Figure 6B illustrates the
CT predictions in comparison to their reference values. Again,
bias was close to zero (–0.01 mL/mHg), while the LoA were
equal to ± 0.4 mL/mmHg. The scatterplot and Bland-Altman
plot for the ANN are shown in Figures 6C,D for Zao and
CT , respectively. For Zao, the ANN-LoA were [–0.013, 0.010]
mmHg.s/mL, whereas for CT predictions, the ANN-LoA found to
be subtly narrower than the RFR and equal to ± 0.3 mL/mmHg.
For both ML approaches, no biases were reported. The mean
difference between the Zao predictions and the ground truth
Zao values lied within a similar range for the two models,
i.e., [–0.012, 0.012] and [–0.013, 0.010] mmHg.s/mL for RFR
and ANN, respectively. The LoA of the CT-RFR ([–0.39 0.37]
mL/mmHg) were slightly broader than the LoA of the CT-
ANN estimator ([–0.32 0.33] mL/mmHg). Substantially higher
errors were reported when the BP information was omitted
from the inputs, especially for the Zao prediction (correlation
was around to 0.75). Table 5 presents the feature importances
of the input regressors for Zao and CT , respectively. For Zao,
brDBP appeared to have the highest importance level followed
by brSBP and crPWV. In the case of CT , brDBP was reported
to have the dominant importance value, followed by cfPWV and
crPWV.

Sensitivity to Training Data Size
The NRMSEs decreased gradually with increasing training size
(Figure 7). Errors in Zao were higher than 8% for a training
dataset with 687 subjects or less. The NRMSE of the CT
predictions exceeded 8% when the training size was smaller
than 458 data instances. It was observed that, for both curves,
addition of new data points had no significant impact on the
accuracy after reaching the 20% of the entire training population
(corresponding to 458 subjects).

Comparison to Prior Art
Table 6 presents the comparison between our proposed PWV-
based ML models and a list of previously published methods,
which, in contrast to our method, use the central aortic blood
pressure and flow waveforms. The PWV-based ML estimators for
Zao outperformed all the other methods achieving a correlation of
0.9. The peak flow method and the time-derivative peaks method
demonstrated lower accuracy (r ≤ 0.79 and broader LoA).
Estimation techniques for CT yielded correlation coefficients
equal or higher than 0.93.
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TABLE 4 | Regression statistics between model predictions and reference values.

Model Slope Intercept r p-value RMSE nRMSE

RFRZao M1 0.77 0.012 mmHg.s/mL 0.89 <0.001 0.006 mmHg.s/mL 7.78%

RFRZao M2 0.77 0.013 mmHg.s/mL 0.89 <0.001 0.006 mmHg.s/mL 7.77%

RFRZao M3 0.66 0.019 mmHg.s/mL 0.81 <0.001 0.008 mmHg.s/mL 9.91%

RFRZao M4 0.55 0.025 mmHg.s/mL 0.75 <0.001 0.009 mmHg.s/mL 11.20%

RFRCT M1 0.81 0.21 mL/mmHg 0.93 <0.001 0.19 mL/mmHg 7.31%

RFRCT M2 0.80 0.22 mL/mmHg 0.93 <0.001 0.19 mL/mmHg 7.37%

RFRCT M3 0.73 0.31 mL/mmHg 0.88 <0.001 0.24 mL/mmHg 9.21%

RFRCT M4 0.63 0.42 mL/mmHg 0.82 <0.001 0.29 mL/mmHg 11.11%

ANNZao M1 0.86 0.007 mmHg.s/mL 0.90 <0.001 0.006 mmHg.s/mL 7.40%

ANNZao M2 0.77 0.012 mmHg.s/mL 0.90 <0.001 0.006 mmHg.s/mL 7.47%

ANNZao M3 0.69 0.016 mmHg.s/mL 0.83 <0.001 0.008 mmHg.s/mL 9.60%

ANNZao M4 0.56 0.022 mmHg.s/mL 0.76 <0.001 0.009 mmHg.s/mL 11.28%

ANNCT M1 0.88 0.14 mL/mmHg 0.95 <0.001 0.16 mL/mmHg 6.26%

ANNCT M2 0.89 0.17 mL/mmHg 0.94 <0.001 0.18 mL/mmHg 6.87%

ANNCT M3 0.75 0.29 mL/mmHg 0.88 <0.001 0.24 mL/mmHg 9.29%

ANNCT M4 0.64 0.45 mL/mmHg 0.83 <0.001 0.29 mL/mmHg 10.94%

RMSE, root mean square error; nRMSE, normalized RMSE.
M1 uses as inputs brSBP, brDBP, HR, cfPWV, crPWV.
M2 uses as inputs brSBP, brDBP, cfPWV, crPWV.
M3 uses as inputs MAP, cfPWV, crPWV.
M4 uses as inputs cfPWV, crPWV.

DISCUSSION

The Zao contributes to the pulsatile arterial load faced by heart
during ejection and has been shown to be an independent
predictor of LV mass index in hypertension (Chirinos et al.,
2010). Moreover, CT offers a valuable assessment not only for
cardiovascular (CV) risk, but also for the relationship between
structural and functional changes in the arterial system with
respect to its elasticity (Mendonça et al., 2009; Haluska et al.,
2010). In a progressively aging population, effective monitoring
of powerful biomarkers, such as Zao and CT , is imperative.
Despite the great efforts for monitoring several biomarkers for
arterial stiffness, there is evidence that the prognostic value
of arterial stiffness as assessed by current techniques might be
compromised in the elderly or special populations (Megnien,
1998; Meaume et al., 2001; Protogerou et al., 2007; Verwoert et al.,
2012). Furthermore, there are methods, such as the pulse contour
techniques for minimally invasive cardiac output monitoring,
which are dependent on CT value (de Wilde et al., 2007).

Measurement of PWV can be utilized for the estimation of
both local (Rabben et al., 2004; Borlotti et al., 2010) and regional
arterial distensibility (Laurent et al., 2006). The evaluation of
PWV is based on the estimation of the pulse transit time
between two arterial sites, and the measurement of the distance
between them. There is emerging evidence supporting that
aortic PWV, i.e., between the carotid and femoral artery, is an
independent predictor of CV risk (Sakuragi and Abhayaratna,
2010; Vlachopoulos et al., 2012). Likewise, the peripheral PWV,
e.g., between the carotid and the radial artery, has been shown
to be an informative indicator of vasodilator reserve and a
predictor of coronary artery disease (Lee et al., 2006). Despite the
widespread acceptance of PWV, we should not be detracted from

the fact that PWV per se is still an indirect measure of arterial
properties and provides no immediate measure of the adverse
effects of vascular stiffening on circulatory hemodynamics. For
instance, although PWV might be often clinically relevant, it is
not the sole determinant of the timing and consequences of the
reflected waves (Asmar et al., 2001; Williams et al., 2006). There
is no doubt that CT is physiologically more relevant than regional
or local arterial compliance surrogate (such as PWVs), in terms of
modulation of cardiac load, LV function, and CV risk assessment.
In particular, the CT can have greater impact in assessing elderly
population or individuals with increased vascular stiffness, where
PWV appears to have limited prognostic value. Moreover, Zao
has been associated with cases of increased cardiac and cerebral
mortality (Mitchell et al., 2010; Vlachopoulos et al., 2012). On
the other hand, PWV is computed between two arterial sites, and
thus cannot provide a global description of the arterial network
as Zao does. Evidence reported by Segers et al. (2007) presents
that measurement of central pressure and flow for the evaluation
of global arterial parameters is more relevant and provides major
mechanistic information that it should be also considered when
the more frequently acquired PWV is evaluated.

Knowledge of Zao and CT might have additional diagnostic
impact as well as additive prognostic value beyond PWV.
Estimation of the Zao and CT is, however, difficult in clinical
practice, as it requires concomitant recordings of pressure and
flow waveforms in the proximal aorta (Randall et al., 1976;
Lucas et al., 1988; Stergiopulos et al., 1994, 1995; Mitchell et al.,
2001). The methodological complexity and lack of validation have
prohibited their application in the everyday clinical practice. For
this reason, capitalization of the regional PWV measurements for
estimating Zao and CT may permit their clinical assessment in a
simple and cost-efficient way.
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FIGURE 6 | Comparison between predicted and reference data. Scatterplots and Bland–Altman plots between: the predicted Zao and the reference Zao using the
RFR (A) and the ANN (C), respectively, and the predicted CT and the reference CT using the RFR (B) and the ANN (D), respectively. The solid line of the scatterplots
represents equality. In Bland–Altman plots, limits of agreement (LoA) are defined by the two horizontal dashed lines.
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TABLE 5 | Feature importances for the prediction of Zao and CT using RFR.

Feature Permutation importance

Zao [mmHg.s/mL] CT [mL/mmHg]

Brachial SBP 0.0031 ± 0.0002 0.09 ± 0.01

Brachial DBP 0.0058 ± 0.0002 0.21 ± 0.01

Heart rate 0.0001 ± 0.0000 0.01 ± 0.00

Carotid-femoral PWV 0.0016 ± 0.0001 0.13 ± 0.01

Carotid-radial PWV 0.0021 ± 0.0001 0.12 ± 0.01

SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood
pressure; PWV, pulse wave velocity.

FIGURE 7 | Sensitivity of precision in terms of NRMSE to the number of the
training data. The 100% of the training size corresponds to 2,290 cases.
NRMSE: normalized root-mean square error.

The present study suggested a ML predictive tool for Zao
and CT by using regional PWV measurements and cuff BP. The
carotid-femoral PWV is a measure of central arterial stiffness,
whereas the carotid-radial PWV expresses a mix of central
and peripheral stiffness of the arterial tree. The principle of
this concept is that the combined information embedded in
the two indicators of regional elasticity can lead to a much-
improved characterization of Zao and CT . The results indicated
that the suggested framework appears to apply well over a wide
range of simulated physiological conditions. The methodology
was appraised by testing two different ML models which, with
proper hyperparameters’ selection, achieved a similar predictive
precision. This may also suggest that there is no high dependency
on the nature of the ML approach, while it can provide
preliminary evidence of the validity of the proposed framework.

Our methodology seems to offer a competitive advantage
in comparison to prior methods. More specifically, it does not
require central blood pressure and flow waves, for which gold
standard measurements are invasive. The invasive nature of the
central BP wave’s acquisition has been addressed either by the
use of the carotid BP which is considered a good surrogate
of aortic BP and can be easily acquired via tonometry, or
by the use of devices that provide an approximation of the
central BP wave via transformation of the radial BP wave (Weiss
et al., 2012; Shoji et al., 2017). Measurement of central flow
has been feasible by non-invasive techniques (e.g., Ultrasound
or Magnetic Resonance Imaging) which are, however, expensive

and rather dependent on operator skills. Yet, the results of
this study showed that it outperformed some of the existing
estimators. Previous methods for estimating Zao had significantly
wider LoA when compared to our PWV-based ML estimators,
while all current methods were also found to have high biases
(>0.01 mmHg.s/mL). For CT , PWV-based ANN had a similar
performance to the PPM estimator, while the DTM yielded a
lower precision. It is to be stressed that the comparison of the
PWV-based ML estimators with the prior art cannot be direct
and absolute, due to two main reasons: (i) the different nature
of the required inputs, and (ii) the simplified simulation of the
measurement error in the time signals. Concretely, although the
previously published techniques are non-invasive, they require
simultaneous measurement of the central blood pressure and
flow, which are more difficult to acquire compared to the
measurement required for the proposed ML estimator. In our
experiments, the testing of these methods was done using the
simulated aortic blood pressure which is the gold standard; in
a real clinical setting, invasive aortic blood pressure is rarely
available. Regarding the noise simulation, the artificial errors to
the signals were simplified; a random scaling factor was selected
and multiplied with the entire signal. Hence, the error did not
vary during the entire beat, and, as a result, the shape of the wave,
from which the computational algorithms are highly dependent
to, remained unaffected.

The main advantage of our proposed method pertains to
its simplicity and convenience (for both the patient and the
physician) rather than its increased accuracy in comparison to
the state of the art. The existing techniques require non-invasive,
yet expensive and complex, flow or velocity measurements for
evaluating Zao and CT . It is undeniable that previous studies
have shown that current non-invasive techniques provide high
accuracy and reliability for both Zao and CT when compared
with the invasive ground truth (Kelly and Fitchett, 1992; Segers
et al., 2007). However, being able to assess Zao and CT from
PWVs alone could be very valuable given that such an approach
eliminates the need for flow measurement which requires
Echocardiographic or Magnetic Resonance Imaging procedures.
Undoubtedly, both techniques are not as accessible as tonometry,
are much more expensive in comparison to the simple tonometric
recordings, and render necessary the presence of well-trained
personnel to handle the required equipment.

Following a regression analysis’ concept, in a previous in-silico
study, Vardoulis et al. (2012) demonstrated that CT could be
effectively derived using only cfPWV. They provided a simple
equation that directly relates the cfPWV measurement to CT .
The results hypothesized that solely cfPWV should be sufficient
for accurately estimating CT . Further light upon the significance
of including more features to the regression method can be
provided by assessing the features’ importance levels. As per
the feature importances of our study, indeed cfPWV appeared
to be among the most significant parameter for estimating CT .
In order to further verify the necessity of including additional
features to cfPWV (namely, cuff BP and crPWV), we predicted
CT using only cfPWV. Concretely, following a similar approach
with Vardoulis et al. yielded a lower prediction precision with
an nRMSE = 12.4%, a zero bias, while LoA were reported to
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TABLE 6 | Comparison of the proposed ML-based Zao and CT estimators to prior art.

Method Estimated Zao

(mmHg.s/mL)
Reference Zao

(mmHg.s/mL)
Error (%) r Bland-altman biases

(mmHg.s/mL)

Time-derivative peaks method* 0.044 ± 0.008 0.056 ± 0.014 Min: –55 Max: –20 0.66 –0.011 [–0.030, 0.007]

Peak flow method* 0.071 ± 0.018 Min: –14 Max: 107 0.79 0.016 [–0.007, 0.038]

PWV-based RFR 0.056 ± 0.013 Min: –27, Max: 34 0.89 –0.000 [–0.012, 0.012]

PWV-based ANN 0.056 ± 0.012 Min: –21, Max: 37 0.90 –0.000 [–0.013, 0.010]

Estimated CT (mL/mmHg) Errors (%) Bland-altman biases
(mL/mmHg)

Decay time method* 1.60 ± 0.71 1.16 ± 0.51 Min: –10, Max: 152 0.93 0.44 [–0.16, 1.05]

Pulse pressure method* 1.23 ± 0.48 Min: –24, Max: 58 0.94 0.07 [–0.27, 0.41]

PWV-based RFR 1.16 ± 0.45 Min: –36, Max: 62 0.93 –0.01 [–0.39, 0.37]

PWV-based ANN 1.18 ± 0.48 Min: –28, Max: 57 0.95 0.01 [–0.32, 0.33]

Zao, aortic characteristic impedance; CT , total arterial compliance.
Errors are expressed as 100 x (Xest–Xactual )/Xactual , where X is the target output under test (i.e., Zao or CT ). Limits of agreement are defined as [mean bias + 1.96 SD,
mean bias–1.96 SD].
*These methods utilize both the central blood pressure and flow waves for estimating Zao and CT .

be± 0.64 mL/mmHg. This error is approximately 2 times higher
than the error provided by the ML model of this study (6.26%
from ANN estimator). Although the cfPWV-based estimator
performed adequately, we may deduce that inclusion of both
cfPWV and crPWV improves the precision in CT estimation.
Importantly, this apparently slight improvement might be rather
necessary when performing the analysis on an in-vivo population.
Yet, the regression analysis, which uses both PWV values
might provide a more clinically relevant estimation of CT , as it
combines both a proximal and a distal approximation of arterial
stiffness, and thus a more complete description of the arterial
tree’s elasticity.

This study further explored and quantified the importance of
every input for the predictive performance. Diastolic pressure
had the most significant contribution to the estimations. This is to
be expected given that both Zao and CT are strong determinants
of mean pressure and by extension the brDBP. Furthermore,
most of the arterial compliance is contained in the aorta.
This could explain why the permutation importance of cfPWV
(namely, aortic PWV) was found to be slightly higher compared
to crPWV (Table 5). Yet, the two PWV inputs presented similar,
high importance levels. It is highly possible that the bulk of the
needed information for Zao and CT is contained in the common
arterial path included in both cfPWV and crPWV; namely,
the arterial segments which are closer to the aorta. Hence, the
inclusion of both is important to detect and reveal this joint
information. Attention must be paid to the fact that this study
uses synthetic data produced by a simulator and, hence, there is
a direct deterministic relation between the input and the outputs.
This relation may lead to an increased accuracy in the predictions.
The results regarding the importance of each feature would be of
benefit if they are considered in a qualitative way.

We additionally evaluated the models’ sensitivity to the
inputs by training and testing the models using different sets
of features. Given that the HR has been shown to have a
pressure-independent impact on PWV (Bikia et al., 2020c),
we decided to include it in our experiments in order to

consider its independent contribution and to enhance the
clinical relevance of our results. Nevertheless, it was shown
that exclusion of HR from the input vector did not harm
the accuracy. Moreover, both RFR and ANN performed
adequately when brSBP and brDBP were replaced by MAP.
However, when only the PWV values were fed to the
models, the precision was deteriorated for both Zao and
CT . This may be explained due to the BP-dependency of
PWV which has been shown to have implications for the
clinical use of arterial stiffness measurements, both in risk
classification and in treatment monitoring of individual patients
(Spronck et al., 2015).

Recent advancements in Artificial Intelligence (AI) have
led to new research possibilities and methodologies for novel
cardiovascular modeling and predictive tools for clinical use
(Ramesh et al., 2004). The present study is in line with
this direction that introduces AI to the field of clinical
medicine. There have been several novel works toward
this path, including estimation of PWV or central BP
(Greve et al., 2016; Xiao et al., 2017; Tavallali et al., 2018).
ML modeling allows for enhancing monitoring of vascular
biomarkers via the analysis of complex datasets, signals and/or
images. The availability of large clinical datasets and powerful
computing systems further encourage the application of ML-
based concepts. In addition, nowadays, vascular parameters or
arterial pulse signals can also be obtained using unobtrusive
devices such as smartphones and smartwatches, providing a
plethora of available data.

The main limitation of the present study is that the data used
in the analysis have been derived from a computer simulator
rather than a real human population. A ML model which is
trained/tested using in-silico data, it is likely that it will not be
capable of making accurate predictions for a real patient. Yet,
the in-silico data allow us for performing an initial validation of
the proposed methodology, whose results will allow to proceed
with the clinical validation. Previous works have used a similar
approach to validate ML-based techniques using virtual patients
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when real clinical data were not available (Huttunen et al., 2019;
Bikia et al., 2020b, 2021; Huttunen et al., 2020). Hence, the
present study proposes the methodology rather than the model
per se. Stricto sensu, based on the findings from an in-silico
population, we may only deduce that the proposed ML-based
methodology could also work using real human data for both the
training and testing procedures. The latter hypothesis remains
to be verified in vivo. Future work will be done toward this
direction. Nevertheless, synthetic data can sufficiently simulate
the content of the real clinical measurements, while they allow
for controlling the distribution of rare but relevant conditions or
events. It is also to be mentioned that the in-silico data allow us
for appraising this concept using the actual Zao and CT , which
are derived analytically from the computer simulator and would
not have been available in vivo. Future work should also include
validation of the method on populations with pathologies or
special populations.

Finally, a major consideration with respect to the application
of ML in Healthcare is generalizability, i.e., the ability of a
model to predict accurately on data sources which are not
included in the dataset of the specific study. Dexter et al.
(2020) demonstrated that studies showing high-performance
ML models may not perform well when applied to data
from other holdout systems. Each modeling strategy is limited
by assumptions and data collection is dependent on several
factors, including clinical context, local factors (e.g., physician
preferences, local care standards), medication selection or
other clinical decisions which influence the model development
(Shameer et al., 2018). Therefore, direct validation of a ML
algorithm to a new dataset should not assume model’s strong
performance on every other dataset; even when the model is
trained using real clinical data. The above limitations underline
the need to consider more inclusive training approaches for
ML models which could encourage the practical application of
ML in Healthcare.

CONCLUSION

This paper introduces a non-invasive simple-to-use estimator
for two valuable hemodynamic quantities, namely, the Zao and
CT . The proposed approach incorporates cuff blood pressure
and regional PWV data, along with a versatile and scalable
ML pipeline. Our findings provide evidence that data related to
regional arterial stiffness can be rather informative for obtaining
a global description of arterial elasticity. Further validation of the
proposed methodology on a large human cohort remains to be
conducted. Upon successful clinical validation, this framework
may provide a reliable method to inform the clinicians about
arterial stiffness, leading to an improved diagnosis and patients’
treatment management.
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