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"All our knowledge begins with the senses, proceeds then to the understanding, and ends with

reason. There is nothing higher than reason."

— Immanuel Kant (1724-1804)

"La souffrance physique on la subit, la souffrance morale on la choisit."

— Éric-Emmanuel Schmitt, Oscar et la dame rose (2002)

"Παιδεία ευτυχούσι μεν εστί κόσμος, ατυχούσι δε καταφύγιον."

— Ισοκράτης (436-338 π.Χ.)
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Abstract
In a progressively aging population, it is of utmost importance to develop reliable, non-

invasive, and cost-effective tools to estimate biomarkers that can be indicative of cardiovas-

cular risk. Clinical parameters directly measured in the heart or the aorta are crucial for the

diagnosis and management of disease. However, their clinical use is severely hampered by

their invasive nature, cost, or need for special equipment. Aortic systolic blood pressure

(aSBP), cardiac output (CO), end-systolic elastance (Ees), and arterial stiffness provide valu-

able information about the cardiovascular state in humans, and are strongly associated with

clinical outcomes. This thesis presents original predictive algorithms suitable for estimating

such cardiovascular biomarkers from commonly measured non-invasive clinical data.

The first aim of this thesis is to develop and validate methods to estimate central hemodynam-

ics, such as aSBP and CO. Firstly, a novel inverse problem-solving method is introduced to

estimate aSBP and CO from non-invasive measurements of cuff pressure and carotid-femoral

pulse wave velocity (cfPWV). The method relies on the adjustment of a previously validated

one-dimensional arterial tree model. Assessment of the accuracy is achieved by implementing

the algorithm, initially, on a small cohort (n = 20), and, thereafter, using a large cohort with

a wide range of age groups from the Anglo-Cardiff Collaborative Trial (n = 144). The second

approach involves the machine learning-based estimation of aSBP and CO using again cuff

pressure and cfPWV. Validation of the method on in silico data shows that machine learning

offers a greatly accurate alternative for monitoring aSBP and CO. Moreover, transfer learning

allows for evaluating the performance of the aSBP estimator in vivo, with results showing

satisfactory agreement between the predicted and the reference data.

The second objective of this thesis entails the development and validation of a gamut of

different machine learning frameworks for the non-invasive prediction of Ees . First, a machine

learning model is trained and tested using as inputs cuff pressure and cfPWV. The importance

of incorporating ejection fraction (EF) as additional input for estimating Ees is also assessed.

Results indicate that Ees cannot be predicted from pressure-based data alone. The addition

of the EF information greatly improves the estimated Ees . Alternatively, we propose a novel

artificial intelligence-based approach to estimate Ees using the information embedded in

clinically relevant systolic time intervals. A training/testing scheme is developed using virtual

subjects (n = 4,645) from a previously validated in silico model. The evaluation provides
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Abstract

very promising results which permit to deduce that this approach constitutes a step towards

the development of an easy and clinically applicable method for assessing left ventricular

systolic function. Furthermore, this work aims to provide evidence on the potential in using

the morphology of the brachial blood pressure waveform and convolution neural networks

for predicting Ees using 3,748 in silico subjects. The arterial blood pressure wave appears to

be a promising source of information for assessing Ees . Predictions are found to be in good

agreement with the reference Ees values over an extensive range of left ventricular contractility

values and loading conditions.

The third objective is to improve in vivo assessment of aortic characteristic impedance (Zao)

and total arterial compliance (CT ). Given that regional PWV measurements are non-invasive

and clinically available, we present a non-invasive method for estimating Zao and CT using

cuff pressure, cfPWV, and carotid-radial PWV via regression analysis. In silico validation using

3,818 subjects yields high accuracy for both Zao and CT estimators, verifying that the method

may offer a valuable tool for assessing arterial stiffness, while reducing the cost and the com-

plexity of the existing techniques.

As a step forward, we introduce a non-invasive method to estimate CT from a single carotid

waveform using artificial neural networks. The proposed methodology is appraised using the

large human cohort (n = 2,256) of the Asklepios study. Precise estimates of CT are yielded,

indicating that such an approach could offer promising applications, ranging from fast and

cost-efficient hemodynamical monitoring by the physician to integration in wearable tech-

nologies.

Finally, in view of the conflicting clinical and experimental evidence regarding the influence

of heart rate (HR) on arterial stiffness and its surrogate marker cfPWV, the last stride of this

research is to evaluate and quantify the effect of HR on cfPWV measurement under controlled

hemodynamic conditions, and especially with respect to blood pressure (BP) that is a strong

determinant of arterial stiffness. The findings conclude that large variations of HR may have a

clinically significant impact on cfPWV, and correction of PWV measurement with respect to

BP may be considered.

In conclusion, this dissertation shows that physics-based modelling and machine learning

are valuable for developing and validating novel, non-invasive health monitoring algorithms.

The high performance of the proposed algorithms for predicting hemodynamical and cardiac

parameters from routinely collected non-invasive data suggests that it is feasible to improve

the current state of the art of monitoring tools for cardiovascular events, while reducing com-

plexity and cost.

Keywords: non-invasive monitoring, central hemodynamics, cardiac contractility, aortic pres-
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sure, cardiac output, end-systolic elastance, arterial compliance, aortic impedance, pulse wave

velocity, computational modelling, predictive modelling, inverse problem-solving, machine

learning, regression analysis, artificial neural networks, random forests, gradient boosting
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Résumé
Dans une société avec une population vieillissante, il est primordial de développer des outils

fiables, non-invasifs et rentables afin d’identifier les biomarqueurs révélateurs d’un risque

cardiovasculaire. Les paramètres cliniques mesurés directement dans le cœur ou l’aorte sont

cruciaux pour le diagnostic et la gestion de la maladie. Cependant, leur utilisation clinique

est gravement entravée par leur nature invasive, leur coût ou la nécessité d’un équipement

spécial. La pression artérielle systolique aortique (aSBP), le débit cardiaque (CO), l’élastance

télésystolique (Ees) et les indices de rigidité artérielle fournissent des informations précieuses

sur l’état cardiovasculaire du sujet, et sont fortement corrélés aux résultats cliniques. Cette

thèse propose des algorithmes prédictifs originaux afin d’estimer ces biomarqueurs cardiovas-

culaires tout en utilisant des données cliniques non-invasives simples.

Le premier objectif de cette thèse est de développer et de valider des méthodes pour estimer

l’hémodynamique centrale, telles que la aSBP et le CO. Dans ce but, une nouvelle méthode

de résolution de problèmes inverses est introduite afin d’estimer la aSBP et le CO à par-

tir de mesures non-invasives comme la pression du brassard et la vitesse d’onde de pouls

carotide-fémorale (cfPWV). La méthode repose sur l’ajustement d’un modèle d’arbre artériel

unidimensionnel préalablement validé. L’évaluation de l’exactitude est réalisée en mettant

en œuvre l’algorithme, initialement sur une petite cohorte (n = 20), et, par la suite, en utili-

sant une grande cohorte comprenant divers groupes d’âge provenant de l’essai collaboratif

Anglo-Cardiff (n = 144). La deuxième approche implique l’estimation basée sur l’apprentissage

automatique de l’aSBP et du CO en utilisant à nouveau la pression du brassard et le cfPWV. La

validation de la méthode sur des données in silico montre que l’apprentissage automatique

offre une alternative très précise pour la surveillance des aSBP et CO. L’apprentissage par

transfert (transfer learning) permit d’évaluer les performances de l’aSBP in vivo, avec des

résultats significatifs démontrant la vraisemblance entre les données prédites et les données

de référence.

Le second objectif est le développement et la validation d’une gamme de différents cadres

d’apprentissage automatique pour la prédiction non-invasive de Ees . Pour cela, un modèle

d’apprentissage automatique est formé et testé en utilisant comme entrées la pression du

brassard et le cfPWV. L’importance d’incorporer la fraction d’éjection (EF) comme entrée sup-

plémentaire pour estimer Ees est également évaluée. Les résultats indiquent que Ees ne peut
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Résumé

pas être prédit à partir des seules données basées sur des données liées à la pression. L’ajout de

l’information EF grandement améliore la Ees estimé. Alternativement, une nouvelle approche

basée sur l’intelligence artificielle pour estimer Ees en utilisant les informations intégrées

dans des intervalles de temps systoliques cliniquement pertinents est proposée. Un schéma d’

entraînement/test est développé en utilisant des sujets virtuels (n = 4,645) à partir d’un modèle

précédemment validé in silico. Cette évaluation fournit des résultats très encourageants per-

mettant de déduire que cette approche est une première étape vers le développement d’une

méthode facile et cliniquement applicable pour évaluer la fonction systolique ventriculaire

gauche. Enfin, ce travail fournit des preuves du potentiel de l’utilisation de la morphologie

de l’onde de la pression artérielle brachiale et des réseaux neuronaux à convolution pour

prédire Ees en utilisant 3,748 sujets in silico. En effet, l’onde de pression artérielle apparaît

comme une source d’information prometteuse pour évaluer Ees . Les prédictions faites se sont

avérées proches des valeurs de référence Ees sur une large gamme de valeurs de contractilité

ventriculaire gauche et de conditions de charge.

Le troisième objectif est d’améliorer l’évaluation in vivo de l’impédance caractéristique aor-

tique (Zao) et de la compliance artérielle totale (CT ). Étant donné que les mesures régionales

de la PWV sont non-invasives et disponibles en clinique, nous présentons une méthode

non-invasive pour estimer Zao et CT en utilisant la pression du brassard, la cfPWV et la PWV

carotide-radiale via une analyse de régression. La validation in silico utilisant 3,818 sujets

donne une grande précision pour les estimateurs Zao et CT , démontrant que la méthode

peut offrir un outil précieux pour évaluer la rigidité artérielle tout en réduisant le coût et la

complexité des techniques existantes.

En outre, nous introduisons une méthode non-invasive pour estimer CT à partir d’une seule

signal d’onde de la pression artérielle carotidienne en utilisant des réseaux de neurones

artificiels. La méthodologie proposée est évaluée en utilisant la grande cohorte (n = 2,256)

de l’étude Asklepios. Des estimations précises de CT sont produites indiquant qu’une telle

approche peut être applicable à de nombreuses fins allant de la surveillance hémodynamique

rapide et rentable par le médecin jusqu’à son intégration dans des technologies portables.

Finalement, compte tenu des preuves cliniques et expérimentales contradictoires concernant

l’influence de la HR sur la rigidité artérielle et de son marqueur de substitution cfPWV, la

dernière étape de cette recherche est d’évaluer l’effet de la HR sur la mesure de la cfPWV dans

des conditions hémodynamiques contrôlées, et en particulier, en ce qui concerne la pression

artérielle, déterminante pour l’évaluation de la rigidité artérielle. Les résultats concluons

que de grandes variations de la fréquence cardiaque peuvent avoir un impact cliniquement

significatif sur la cfPWV, et une correction de la mesure de la PWV par rapport à la pression

artérielle doit probablement être envisagée.
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En conclusion, cette thèse démontre que la modélisation basée sur la physique et l’appren-

tissage automatique peuvent servir à développer et valider de nouveaux algorithmes à des

fins de surveillance non-invasives de la santé. Les performances des algorithmes pour prédire

les paramètres hémodynamiques et cardiaques, à partir de données non-invasives collectées

périodiquement, suggèrent qu’il est possible d’améliorer l’état de l’art actuel des outils de

surveillance des événements cardiovasculaires tout en réduisant leur complexité et leur coût.

Mots clés : surveillance non-invasive, hémodynamique centrale, contractilité cardiaque, pres-

sion aortique, débit cardiaque, élastance télésystolique, compliance artérielle, impédance

aortique, vitesse de l’onde de pouls, modélisation informatique, modélisation prédictive,

résolution de problèmes inverse, apprentissage automatique, analyse de régression , réseaux

de neurones artificiels, forêt d’arbres décisionnels, gradient boosting
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Περίληψη
Σε έναν προοδευτικά γηράσκοντα πληθυσμό, η ανάπτυξη αξιόπιστων, μη επεμβατικών και

οικονομικά προσιτών εργαλείων για την εκτίμηση βιοδεικτών του καρδιαγγειακού κινδύνου

είναι υψίστης σημασίας. Συγκεκριμένα, μελέτες έχουν δείξει πως οι κλινικές παράμετροι που

μετρώνται απευθείας στην καρδιά ή την αορτή συμβάλλουν εξαιρετικά στην αποτελεσματι-

κότερη διάγνωση και διαχείριση της καρδιαγγειακής νόσου. Ωστόσο, η κλινική υιοθέτηση

των παραμέτρων αυτών υποβαθμίζεται σημαντικά εξαιτίας της παρεμβατικής τους φύσης, του

κόστους ή της ανάγκης για ακριβό και εξειδικευμένο εξοπλισμό. Η αορτική συστολική αρτη-

ριακή πίεση (aSBP), η καρδιακή παροχή (CO), η τελική συστολική ελαστικότητα (Ees) και οι

δείκτες αρτηριακής δυσκαμψίας παρέχουν πολύτιμες πληροφορίες σχετικά με την κατάσταση

του καρδιαγγειακού συστήματος στον άνθρωπο, ενώ συνδέονται ισχυρά με κλινικά περιστα-

τικά. Η παρούσα διδακτορική διατριβή προτείνει πρωτότυπους προγνωστικούς αλγόριθμους

κατάλληλους για την εκτίμηση τέτοιων καρδιαγγειακών βιοδεικτών χρησιμοποιώντας ευρέως

διαθέσιμα δεδομένα τα οποία μπορούν να συλλεχθούν με εύκολο και μη επεμβατικό τρόπο

στο κλινικό περιβάλλον.

Ο πρώτος στόχος της παρούσας εργασίας είναι η ανάπτυξη και επικύρωση μεθόδων για την

εκτίμηση κεντρικών αιμοδυναμικών παραμέτρων, και συγκεκριμένα, της aSBP και της CO.

Καταρχάς, παρουσιάζουμε μια καινοτόμα μέθοδος αντίστροφης επίλυσης προβλημάτων με

σκοπό την εκτίμηση της aSBP και της CO από μη επεμβατικές μετρήσεις πίεσης μανσέτας

και ταχύτητας παλμικού κύματος (cfPWV). Ειδικότερα, η μέθοδος βασίζεται στην προσαρ-

μογή ενός προηγουμένως επικυρωμένου μονοδιάστατου μοντέλου αρτηριακού δέντρου. Η

αξιολόγηση της ακρίβειας της μεθόδου πραγματοποιείται με την εφαρμογή του αλγορίθμου,

αρχικά, σε μια μικρή ομάδα ενήλικων εθελοντών (n = 20) και, στη συνέχεια, χρησιμοποι-

ώντας μια μεγάλη ομάδα υποκειμένων (n = 144) ενός ευρέους φάσματος ηλικιακών ομάδων.

Η δεύτερη προτεινόμενη μέθοδος περιλαμβάνει την εκτίμηση της aSBP και της CO μέσω

μηχανικής μάθησης χρησιμοποιώντας, ομοίως με προηγουμένως, δεδομένα πίεσης μανσέτας

και cfPWV. Η in silico επικύρωση της μεθόδου δείχνει ότι η μηχανική μάθηση προσφέρει

μια αξιόπιστη εναλλακτική για την παρακολούθηση της aSBP και της CO. Παράλληλα, η

μεταφορά μάθησης (transfer learning) επιτρέπει την αξιολόγηση της απόδοσης του εκτιμητή

της aSBP σε in vivo κλινικά δεδομένα, με τα αποτελέσματα να δείχνουν εξαιρετική συμφωνία

και ακρίβεια μεταξύ των εκτιμώμενων τιμών και των πραγματικών τιμών αναφοράς.
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Περίληψη

Ο δεύτερος στόχος της εργασίας αφορά την ανάπτυξη και εφαρμογή μιας γκάμας διαφο-

ρετικών πλαισίων μηχανικής μάθησης για τη μη επεμβατική πρόβλεψη της Ees . Αρχικά,

ένα μοντέλο μηχανικής μάθησης εκπαιδεύεται και δοκιμάζεται χρησιμοποιώντας ως στοιχεία

εισόδου μετρήσεις πίεσης μανσέτας στο βραχίονα και cfPWV. Στο πλαίσιο της εργασίας,

εκτιμάται, επίσης, η σημαντικότητα της ενσωμάτωσης του κλάσματος εξώθησης (EF) ως

πρόσθετης εισόδου για τον υπολογισμό της Ees . Τα αποτελέσματα δείχνουν πως τα δε-

δομένα από μετρήσεις αρτηριακής πίεσης δεν επαρκούν για την ακριβή εκτίμηση της Ees .

Εντούτοις, η επιπρόσθετη πληροφορία που εισάγει το EF βελτιώνει σημαντικά τις εκτιμήσεις

της Ees . Εναλλακτικά σε αυτήν την τεχνική, προτείνεται μια τρίτη προσέγγιση βασισμένη,

εκ νέου, σε τεχνητή νοημοσύνη για τον υπολογισμό της Ees χρησιμοποιώντας, αυτήν τη

φορά, την πληροφορία που εμπεριέχεται σε κλινικά συναφή συστολικά χρονικά διαστήματα.

΄Ενα μοντέλο εκπαίδευσης/δοκιμών αναπτύσσεται χρησιμοποιώντας in silico υποκείμενα (n =

4,645) που παράγονται από ένα προηγουμένως επικυρωμένο υπολογιστικό μοντέλο ρευστών.

Τα ευρύματα της αξιολόγησης υποδεικνύουν εξαιρετική συνάφεια μεταξύ των εκτιμήσεων

και των πραγματικών τιμών και, έτσι, συνάδεται πως η προσέγγιση αυτή αποτελεί ένα βήμα

μπροστά προς την ανάπτυξη μιας απλής και κλινικά εφαρμόσιμης μεθόδου για την αξιο-

λόγηση της συστολικής λειτουργίας της αριστερής κοιλίας. Τέλος, μια διαφορετική τεχνική

επιδιώκει να ερευνήσει την δυνατότητα πρόβλεψης της Ees από ολόκληρη τη μορφολογία

της κυματομορφής της βραχιόνιας πίεσης, σε συνδυασμό με την υπολογιστική ισχύ που πα-

ρέχουν τα ευρέως γνωστά νευρωνικά δίκτυα. Το κύμα αρτηριακής πίεσης αποδεικνύεται μία

πλούσια πηγή πληροφοριών για την αξιολόγηση της συσταλτικότητας της αριστερής κοι-

λίας. Ειδικότερα, διαπιστώνεται ότι οι προβλέψεις της Ees είναι ιδιαίτερα ακριβείς για ένα

ευρύ φάσμα τιμών συσταλτικότητας της αριστερής κοιλίας, καθώς και διαφορετικών φορτίων.

Επιπλέον, ως τρίτος στόχος ορίζεται η βελτίωση της κλινικής αξιολόγησης της σύνθετης

αντίστασης της αορτής (Zao) και της συνολικής αρτηριακής συμμόρφωσης (CT ). Δεδομένου

ότι οι τοπικές μετρήσεις της PWV είναι μη επεμβατικές και κλινικά άμεσα διαθέσιμες, εφήυ-

βραμε μια μη επεμβατική μέθοδο για την εκτίμηση της Zao και της CT χρησιμοποιώντας πίεση

μανσέτας, cfPWV και καρωτιδοακτινική PWV και εφαρμόζωντας ανάλυση παλινδρόμησης. Η

in silico επικύρωση της μεθόδου χρησιμοποιώντας 3,818 εικονικά υποκείμενα αποδίδει υψηλή

ακρίβεια για τις εκτιμώμενες τιμές τόσο της Zao όσο και της CT . Τα αποτελέσματα συνηγο-

ρούν στο γεγονός ότι η παρούσα μέθοδος ενδέχεται να αποτελέσει ένα πολύτιμο εργαλείο

για την εκτίμηση της αρτηριακής δυσκαμψίας, μειώνοντας ταυτόχρονα το κόστος και την

πολυπλοκότητα των υφιστάμενων τεχνικών.

Στη συνέχεια, παρουσιάζουμε μια μη επεμβατική μέθοδο για την εκτίμηση της CT από μια

μεμονωμένη κυματομορφή αρτηριακής πίεσης καρωτίδας χρησιμοποιώντας τεχνητά νευρωνι-

κά δίκτυα. Η προτεινόμενη μεθοδολογία αξιολογείται αξιοποιώντας ένα μεγάλο πληθυσμό

υγιών ενηλίκων (n = 2,256) από τη μελέτη του Asklepios. Συγκεκριμένα, παρατηρείται υψηλή

ακρίβεια στις εκτιμήσεις της CT , γεγονός που υποδεικνύει πως μια τέτοια προσέγγιση θα
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μπορούσε να προσφέρει πολλά υποσχόμενες τεχνολογικές εφαρμογές. Τέτοιες εφαρμογές

θα μπορούσαν να συμπεριλάβουν τεχνολογίες γρήγορης και οικονομικής αιμοδυναμικής πα-

ρακολούθησης από τον ίδιο το γιατρό, αλλά και εφαρμογές που ενσωματώνουν αντίστοιχες

μεθόδους σε φορητές τεχνολογίες, όπως έξυπνα ρολόγια ή άλλες συσκευές.

Τέλος, εν όψει των αντικρουόμενων κλινικών και πειραματικών στοιχείων σχετικά με την

επίδραση του ΗΡ στην αρτηριακή δυσκαμψία και τον υποκατάστατο δείκτη του cfPWV, το

τελευταίο βήμα αυτής της έρευνας πραγματεύεται την αξιολόγηση και ποσοτικοποίηση της

επίδρασης του ΗΡ στη μέτρηση της cfPWV υπό ελεγχόμενες αιμοδυναμικές συνθήκες, και

ιδιαίτερα σε σχέση με αρτηριακή πίεση που αποτελεί έναν ισχυρό καθοριστικό παράγοντα

της αρτηριακής δυσκαμψίας. Βάσει των ευρημάτων μας, συμπεραίνουμε ότι οι μεγάλες δια-

κυμάνσεις του ΗΡ μπορεί να έχουν κλινικά σημαντική επίδραση στην cfPWV και, άρα, η

διόρθωση της μέτρησης της PWV ως προς την αρτηριακή πίεση μπορεί να κριθεί αναγκαία

σε τέτοιες περιπτώσεις.

Εν κατακλείδι, αυτή η διατριβή δείχνει ότι τα μοντέλα φυσικής και η μηχανική εκμάθηση

αποτελούν πολύτιμα εργαλεία για την ανάπτυξη και την επικύρωση νέων, μη επεμβατικών

αλγορίθμων παρακολούθησης της υγείας. Εκείνο που αξίζει να σημειωθεί είναι πως τα ερ-

γαλεία αυτά εισάγωνται για πρώτη φορά στην παρακολούθησης καρδιαγγειακών στοιχείων

και παρέχουν σημαντικές δυνατότητες ως προς τη βελτίωση του συγκεκριμένου τομέα. Πιο

ειδικά, οι επιδόσεις των αλγορίθμων για την πρόβλεψη των αιμοδυναμικών και καρδιακών

παραμέτρων από τα μη επεμβατικά δεδομένα υποδηλώνουν ότι είναι εφικτό να βελτιώσουμε

τις τρέχουσες τεχνολογίες παρακολούθησης των καρδιαγγειακών συμβάντων, ενώ μειώνο-

ντας ταυτόχρονα την πολυπλοκότητα και το κόστος τους.
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Chapter 1

1 Introduction

1.1 Motivation

Maintaining a healthy vascular state is the cornerstone of human longevity. Cardiac and

vascular diseases remain among the leading causes of hospitalization and morbidity in the

western world (approximately 18 million deaths per year, representing 30 % of all global

deaths) [1]. Cardiovascular diseases constitute a group of disorders of the heart and blood

vessels among which are coronary heart disease, cerebrovascular disease, and peripheral

arterial disease. Adverse conditions such as these are detrimental to patients as they increase

morbidity and mortality, and prolong hospital stay [2; 3; 4]. In addition, adverse events have a

significant impact on healthcare costs and resources.

Chronological age is a major risk factor for cardiovascular disease. While age-related arterial

damage occurs predominantly in later life, there is high inter-individual variability, with some

displaying early vascular ageing [5]. This has led to the development of the concept of vascular

age, which may be better linked to the prognosis of cardiovascular disease [6]. Whereas

chronological aging is related to the passage of time, vascular aging relates to the decline in

arterial function.

In a progressively aging world population, it is of utmost importance to define the biomarkers

that accurately reflect the state of vascular ageing in order to improve the detection and

assessment of cardiovascular disease. Clinical parameters directly measured in the heart or

at the root of the aorta are crucial for early detection of vascular age, diagnosis, prognosis,

treatment, and management of the disease. But despite their diagnostic importance, their

clinical use is severely hampered by their invasive nature, cost, or need for special equipment.

Therefore, there is an unmet need for reliable, convenient, non-invasive, and cost-efficient
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Chapter 1. Introduction

predictive technologies to assist the clinician with cardiovascular monitoring.

The overall goal of this thesis is to establish biomedical predictive models for cardiovascular

monitoring and assessment in order to aid clinical decision-making for cardiovascular disease.

Our vision is to transform the clinical monitoring environment and offer solutions to facilitate

the acquisition of valuable but, until now, difficult to obtain biomarkers. Precisely, this work

focuses on major cardiovascular biomarkers, including aortic systolic blood pressure, cardiac

output, end-systolic elastance, total arterial compliance, aortic characteristic impedance, and

arterial stiffness, given the wealth of evidence that they can capture age-related changes and

pathologies and predict clinical outcomes.

1.2 Cardiovascular monitoring

In recent years, cardiovascular risk assessment has been developed into a prominent area of

research and has risen to the forefront of efficient management of patients at risk of develop-

ing cardiovascular disease. Monitoring of biomarkers for the vascular and cardiac function

is crucial for cardiovascular disease identification, treatment planning, and assessment of

therapy response.

Although many factors contribute to the incidence and progression of cardiovascular disease,

adverse outcomes are ultimately associated with a failure or ineffectiveness of the biomechan-

ical system to deliver oxygenated blood to organs and tissues. It is to be noted that the key

biomechanical properties of the heart and the circulatory system, including cardiac contrac-

tion, arterio-ventricular coupling, large artery stiffness, and microvasculature, influence the

morphology of pressure and flow waves in blood vessels [7].

An arterial wave can be termed as a time-wise change in pressure or flow that propagates

along a blood vessel. Pressure and flow waveforms result from the superposition of waves

that pass by an arterial location, with each wave causing an increment or decrement in the

resulted waveform. Arterial waves of pressure and flow contain a wealth of information on

the cardiovascular system and their measurement has become the cornerstone of current

advancements in research and technology. Importantly, pressure and flow waveforms allow

for the derivation of numerous cardiovascular parameters, such as heart rate, systolic blood

pressure, cardiac output, peripheral resistance, arterial stiffness, respiration, and many more,

which can be informative of disease initiation or/and progression.

Pulse wave analysis has introduced a multitude of new invasive and non-invasive biomark-

ers which have been tested in order to determine their clinical utility in the stratification

of cardiovascular risk. Several pulse wave analysis techniques rely solely on the pressure

wave, while others harness both the pressure and flow information. Circulating markers of

endothelial function and inflammation have been identified as useful markers in the diagnosis
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of disease, as well as disease monitoring, progression, and risk assessment [8; 9; 10]. In addi-

tion, technologies assessing structural and functional parameters have been evaluated with

regard to their clinical value in risk assessment [10]. However, less attention has been given to

other equally important parameters like total systemic compliance and aortic characteristic

impedance, which are major determinants of cardiac afterload and, in consequence, arterial

blood pressure [11].

Moreover, central hemodynamical quantities, such as cardiac output and central (aortic)

pressure, have been generally shown to be more powerful predictors of clinical outcomes than

corresponding measurements obtained in the peripheral arteries such as the radial, femoral or

brachial arteries [12; 13]. Critically ill or intensive care unit patients often require continuous

assessment of cardiac output for diagnostic purposes or for guiding therapeutic interventions

[14; 15; 16], whereas several studies have shown the pathophysiological importance of cen-

tral systolic blood pressure as the critical index for diagnosis and preventing cardiovascular

diseases [17; 18; 19].

Although a great number of the monitoring methods are currently established in the clinical

setting, their use is severely hampered by their invasive nature, cost, need for special equip-

ment and training, or inapplicability to sensitive age groups [20]. In addition, the majority of

the existing techniques cannot be used outside the clinic rendering cardiovascular monitoring

unfeasible after hospital discharge.

Therefore, there is a demand for a new generation of non-invasive methods and corresponding

devices that will provide clinical insights on cardiovascular health, inside and outside of the

clinical setting. Such efforts should focus on non-invasive technologies which have the

potential to transform cardiovascular assessment enabling monitoring feasible outside the

hospital, reducing hospitalization periods, and essentially decreasing the staff-to-patient ratio

[21; 22].

In the next section, we briefly review current techniques for measuring blood pressure and

flow/velocity waveforms. Subsequently, we cover some of the most well-established tech-

niques that use the measured pressure or/and flow waves for estimating key cardiovascular

parameters. The section concludes with some considerations with respect to the effect of

cardiac frequency on the assessment of arterial stiffness.

Measurement of blood pressure

The gold-standard measurement for acquiring the blood pressure waveform is invasive, and

it is performed either with a micromanometer-tipped catheter or fluid-filled catheter and

external manometer [7; 23]. Micromanometer-tipped catheters have an excellent frequency

response and provide a high fidelity waveform, but they are expensive. Fluid-filled catheter

configurations are less expensive; however, their performance can be poor and should be

3



Chapter 1. Introduction

tested to ensure that the waveform is faithfully captured [7]. A common drawback of such

systems pertains to damping which can often occur in the case of an improperly flushed

catheter. Importantly, the clinical use of these catheter-based systems is severely limited in the

routine examination due to its invasive nature and its associated complications of bleeding,

thrombosis, and infection.

Applanation tonometry and sphygmomanometry offer non-invasive alternatives for mea-

suring the arterial blood pressure waveform. Applanation tonometry involves slightly com-

pressing against bone over a superficial artery with a pen-like pressure transducer (Figure 1.1)

[24; 25]. Although the technique is relatively easy to learn, it requires some experience from

the operator for attaining the correct sensor position during the measurement. Applanation

tonometry is commonly applied on the radial artery, as well as in other locations, including

carotid or femoral arteries, but with less adequate performance [7]. The acquired signal is

typically calibrated using the conventional brachial cuff pressures, which, however, may in-

volve errors due to cuff pressure inaccuracies and pulse amplification from the brachial site

to the radial site [26; 27]. A sphygmomanometer is a device that composes of an inflatable

rubber cuff, which is wrapped around the arm (brachial artery) (Figure 1.2). A bulb inflates

the cuff and a valve releases pressure. Currently, digital sphygmomanometers are automated,

providing blood pressure readings without needing someone to operate the device. However,

convenience comes at the expense of accuracy in the pressure measurement. The newest tech-

nologies have introduced cuff-based devices for other arterial locations, such as carotid and

femoral arteries (e.g. SphygmoCor EXCEL). While being fully non-invasive and cost-efficient, it

should be noted that both applanation tonometry and sphygmomanometry cannot be applied

to every arterial location, such as locations which are covered by thick layers of tissue or bones

(e.g. the aorta).

Measurement of blood flow/velocity

The gold-standard for invasive flow measurement is perivascular flow probes which use

transit-time ultrasound methods. In humans, the use of flow probe is limited to the clinical

assessment of bypass grafts [28], whereas invasive arterial wave analysis is usually performed

using blood velocity measurements from Doppler flow wires which measure velocity, rather

than flow (e.g. Philips Volcano ComboWire) [29].

Phase-contrast magnetic resonance imaging (PC-MRI) is considered as the gold-standard

non-invasive method for measuring flow. PC-MRI involves the motion of magnetic spins

through a magnetic field gradient which enables velocity encoding in a specified direction

[30]. Arterial flow is obtained by setting a two-dimensional acquisition plane through the

selected vessel cross-section, encoding velocity through-plane, and integrating velocities over

the cross-section [Figure 1.3 (left pannel)]. The signal-to-noise ratio (SNR) is determined by

the encoding velocity (VENC), which must be set properly in order to avoid aliasing (SNR is
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Figure 1.1 – Schematic representation of the basic principle of applanation tonometry.

set too low) or insufficient contrast (SNR is set too high) [29]. Despite the advantages offered

by the method, PC-MRI is expensive and most suited to imaging central vessels.

Doppler ultrasound is less expensive and can be more easily employed for imaging peripheral

arteries. Pulsed Doppler relies on the acquisition of a velocity spectrum over time inside a

sample volume that is positioned by the operator, typically in the center of the vessel [Figure

1.3 (right pannel)]. The intensities of pixels in each vertical line of the spectrum essentially

represent a histogram of velocities within the sample volume at the given time instance.

Therefore, the spectrum can indicate whether "the velocity profile is relatively flat (narrow

spectrum) or contains a range of velocities due to a more parabolic, skewed, or turbulent

profile (broad-spectrum)" [29]. Potential problems with this technique include the assumption

of a circular left ventricular outflow tract (LVOT) and the requirement of parallel alignment of

the pulsed Doppler signal.

Having provided an overview of techniques for measuring pressure and flow/velocity wave-

forms, the following subsections review the most commonly applied techniques that harness

the measured pressure and/or flow waves for acquiring some major cardiovascular parameters.

In particular, this section presents the current state of the art for the following cardiovascular

biomarkers: aortic systolic blood pressure, cardiac output, end-systolic elastance, total arterial

compliance, and aortic characteristic impedance.
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Figure 1.2 – Conventional automated sphygmomanometer.

1.2.1 Aortic systolic blood pressure

Definition and clinical relevance

Arterial pressure varies continuously over the cardiac cycle, but in clinical practice, only

systolic and diastolic pressures are routinely reported. These are usually measured in the

brachial artery using cuff sphygmomanometry. However, the shape of the pressure waveform

changes continuously throughout the arterial tree. Although diastolic and mean arterial

pressures are relatively constant, systolic pressure may be up to 40 mmHg higher in the

brachial artery than in the aorta [31; 32; 33]. Aortic blood pressure is of great importance, as it

represents the direct pressure load faced by the ejecting left ventricle. Aortic systolic blood

pressure (aSBP) represents the cardiac and cerebral burden more directly than office systolic

blood pressure. Overall, it has been shown to be an important biomarker for the diagnosis

and prevention of cardiovascular disease [17].

State of the art

Direct measurement of aSBP is done via catheterization, which constitutes the clinical ref-

erence method for blood pressure monitoring in high-risk surgical patients and critically ill

patients. However, invasive monitoring is not feasible for routine examination or continuous

monitoring. This inherent limitation has led to the development of numerous methods for

deriving central aortic pressure waveform from a peripheral pressure wave via generalized

transfer functions [34; 35; 36], or parameter-estimation techniques from pooled clinical data
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Figure 1.3 – Imaging methods for measuring cross-sectional area or diameter waveforms and
flow or mean velocity waveforms. Taken from [29].

[37; 38]. The generalized transfer function constitutes a popular technique for deriving aortic

pressure from non-invasively measured peripheral pressure waves, and is employed in several

commercial devices. In essence, a transfer function is computed from the ratio of the Fourier

transform of the peripheral pressure wave, Pp , to the Fourier transform of the aortic pressure

wave, Pao , in the frequency domain. For every harmonic, the amplitude of the transfer func-

tion is defined as the ratio of amplitudes of the peripheral and aortic pressure wave and the

phase of the transfer function as the difference in the phase between the peripheral and aortic

pressure. The generalized transfer function is derived from the average of a (large) number

of transfer functions measured in a group of human subjects. Importantly, these techniques

rely on simplified assumptions which reduce accuracy in predictions, whereas they do not

account for the specific arterial tree properties of the subject under consideration [39; 40].

1.2.2 Cardiac output

Definition and clinical relevance

Cardiac output (CO) is defined as the volume of blood expelled by the heart per unit time. For

a healthy adult at rest, CO is approximately 5 liters per minute (L/min). CO, being the main

determinant of oxygen transport to the different body regions, must be adapted to the needs

of the body at all times; CO exceeds 30 L/min during intense exercise or it can be less than 2

L/min for a patient in circulatory shock. Critically ill patients generally have abnormal oxygen

demands as a result of the underlying disease triggering process. Thus, CO monitoring is

essential for patient management in the operating room and the intensive care unit (ICU). The
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dynamic range suggests that CO is a major indicator of one’s hemodynamic state. As a result,

the determination of CO in a non-invasive, accurate, and reliable way is of utmost importance.

State of the art

The most direct and accurate way of measuring CO is to use a flowmeter, which, however, is

impractical to perform in humans only for diagnostic purposes. Other methods for acquiring

CO include invasive approaches, such as the Fick method and the thermodilution method.

The Fick method utilizes a pulmonary artery catheter to measure oxygen consumption by

the lungs and the arteriovenous difference in oxygen concentration. CO is calculated by

dividing the oxygen consumption of the lungs by the arteriovenous difference in oxygen. The

thermodilution method uses a pulmonary artery catheter having a thermistor to measure a

decrease in temperature that results from an injection of a bolus of cold fluid into the right

atrium. The Stewart-Hamilton conservation of heat equation is then used to compute CO [41].

Although the Fick method and thermodilution are both clinically feasible, they are limited in

use due to their invasive nature, as well as their association with increased risk and morbidity

in critically ill patients [42].

Other methods of measuring CO include minimally invasive methods such as pulse con-

tour analysis and oesophageal Doppler monitoring [43]. Pulse contour analysis requires the

insertion of an arterial catheter at an arterial location, allowing a continuous pulse wave-

form contour analysis to be performed. Several methods for obtaining CO from a peripheral

pressure pulse have been reported in the literature [44; 45; 46]. The oesophageal Doppler

technique measures blood flow velocity in the descending aorta utilizing a Doppler trans-

ducer placed at the tip of a flexible probe. The probe is introduced into the oesophagus

of sedated, mechanically ventilated patients and then rotated so the transducer faces the

descending aorta and a characteristic aortic velocity signal is obtained. The CO is calculated

as the heart rate multiplied by the stroke volume, where the stroke volume is calculated as

a function of the flow velocity and the cross-sectional area of the aorta. The convenience of

previously known minimally invasive methods of measuring CO is limited by their invasive

nature (catheterization is required), high cost, and the need for specialized equipment or

training.

Finally, the most commonly used non-invasive methods for CO are based on pulse wave

analysis from the cross-sectional area and blood velocities in the LVOT [47] or directly from

MRI-derived aortic flow-time signals [48]. PC-MRI has been considered to be the most precise

non-invasive technique for measuring CO [30]. Doppler ultrasound and MRI, while completely

non-invasive and reasonably accurate, require the allocation of expensive resources. Impor-

tantly, none of the aforementioned methods are practical for continuous bedside monitoring

of a patient’s CO or routine examination.
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1.2.3 End-systolic elastance

Definition and clinical relevance

Evaluation of systolic left ventricular (LV) performance is of high importance in physiological

investigation and clinical practice. An ideal parameter of LV contractility should assess the

inotropic state independently of preload, afterload, heart rate, and LV remodelling.

The concept of end-systolic elastance (Ees), first introduced by Suga and Sagawa in 1974 [49],

has become widely accepted. The Ees , i.e. the slope of the end-systolic pressure-volume

relationship (ESPVR), constitutes a pivotal determinant of LV systolic performance and is

now considered an established index of contractility [49; 50; 51]. Modelling of time-varying

elastance can be described using the relationship between the LV pressure, PLV , and volume,

VLV , namely:

E(t ) = PLV (t )

VLV (t )−Vd
, (1.1)

where Vd indicates the dead volume of the left ventricle [49; 51].

Being an index of the contractility and systolic stiffness of the left ventricle, Ees is affected by

the inotropic state of the myocardium and, in the long-term, by geometric remodelling and

biophysical myocardial tissue properties (which in turn depend on the stiffness of myocardial

cells, fibrosis, and other factors) [52; 53]. The effective matching between Ees and vascular load

leads to optimal mechanical function. Age-related arterial stiffening [54] and hypertension

[55] are related to the stiffening of the left ventricle, which is accompanied by an increased

value of Ees . It has also been shown that anti-hypertensive treatment reduces Ees and enhances

arterial-ventricular coupling [56]. Furthermore, the intercept of the ESPVR (namely Vd ) has

been linked with prognosis in chronic heart failure [57].

State of the art

Derivation of Ees requires the measurement of multiple invasive pressure-volume loops under

various loading conditions [59] which limits its use in the routine clinical setting. Echocardio-

graphy is commonly used in the evaluation of LV systolic function and thus in the evaluation

of Ees . More recently, new techniques such as tissue Doppler imaging, three-dimensional

evaluation, and speckle tracking echocardiography have been proposed for more precisely

quantifying LV systolic function [60; 61; 62; 63]. Yet, these methods are technically complex,

time-consuming, and user-dependent.

Research has been directed towards the development of methods for deriving Ees from non-

invasive single-beat measurements [64; 65]. First, Chen et al. [64] proposed a simple equation
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Figure 1.4 – Concept of left ventricular elastance: (A) A heart cycle is presented as a ven-
tricular pressure-volume graph. Instantaneous elastance, end-systolic elastance (Ees) and
end-diastolic elastance (Eed ) are also presented. Ees intersects the left ventricular (LV) volume
axis at the dead volume abscissa (V0). (B) Normalized time varying elastance (EN , E∗

N ) as a
function of normalized time. EDV: end-diastolic volume, ESV: end systolic volume, E (t ): time
varying elastance, Ps y s : systolic pressure. Adapted from [58].

for estimating Ees from arm cuff pressure, stroke volume, and ejection fraction. Their proposed

method incorporates an estimated normalized ventricular elastance at arterial end-diastole

which was derived from regression on previously recorded studies. Moreover, Shishido et al.

[65] suggested the estimation of Ees from pressure values, systolic time intervals, and stroke

volume. Their analysis relies on the approximation of the time-varying elastance curve by

two linear functions corresponding to the isovolumic contraction phase and the ejection

phase. The slope ratio of these functions is calculated and used for estimating Ees by the

employment of a simple equation. This methodology evidences the utility of systolic time

intervals on the estimation of Ees , while Reant et al. have also emphasized the importance of

leveraging the valuable information of systolic time intervals for assessing LV function [66].

Finally, other clinical indices for evaluating the contractile state of the heart include the use

of simple equations involving additional quantities, such as arterial elastance, end-systolic

volume, or ejection fraction [67]. However, the calculation of ejection fraction as assessed by

echocardiography can be rather sensitive to errors and derived approximately. Removal (and

replacement) of ejection fraction from the calculation equation could potentially reduce the

error imposed by such an approximation.

1.2.4 Total arterial compliance

Definition and clinical relevance

The total arterial compliance (CT ) is a biomechanical property of the arterial tree with great

physiological and pathological importance [68; 69; 70]. CT and peripheral resistance constitute
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a major part of the arterial load on the heart [11]. Arterial compliance expresses the ability of

the arterial system to store blood during systole without excessive pressure rise (Figure 1.5)

and influences central blood pressure [47] and stroke volume [71]. CT is becoming a promising

parameter for evaluating the relationship between structural and functional changes in the

vascular system with respect to its elasticity [72; 73]. Alterations in arterial compliance are

associated with various physiological (aging) [74] or pathological (hypertension) conditions

[75], which cannot be necessarily assessed by current biomarkers. Importantly, CT has been

found to be superior over traditional evaluation techniques including pulse pressure and

echocardiography [73; 75]. In addition, other studies have shown that CT was proven capable

of differentiating among diseased, elderly, and healthy individuals [75; 76; 74]. In view of the

emerging evidence on the importance of CT [72], the development of an accurate and simple

method for its estimation may be valuable.

Figure 1.5 – Graphical representation of the concept of compliance being the ability of the
arterial walls to distend, dA, under a given increase in transmural pressure, dP.

State of the art

The direct, non-invasive measurement of the CT is not feasible due to two inherent difficulties:

(i) the absence of no simple way to compute the changes in blood volume in the systemic

arterial tree, and (ii) the strong pressure-dependency of arterial compliance that does not

allow for the derivation of a single value that can characterize arterial compliance over the

whole physiological pressure range. Some direct but traumatic methods for estimating arterial

compliance in animals have been reported in the literature [77].

To overcome these limitations, several methods have been proposed for indirect estimation

of CT [78; 79; 80; 81]. Most commonly, these methods require simultaneous recordings of

the invasive aortic pressure and flow waves or cardiac output. Still, the complexity of these

methods has limited the assessment of CT in everyday clinical practice, while other surrogates

of local or regional arterial stiffness [82; 83] have been used more often.

Some well-established methods for estimating CT include the diastolic decay method, the

area method, and the pulse pressure method [81; 78]. The decay time method is based on the
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two-element Windkessel model of systemic circulation. Its principle is that during diastole

there is no inflow from the heart, and thus, the decrease of aortic pressure, is characterized by

the decay time. This decay can be fitted mono-exponentially to any portion of the diastole to

yield the characteristic time or time constant, which is RCT . The CT can be then calculated for

a known value of peripheral resistance (R).

The area method was introduced by Randall [84]. It essentially represents an integral variation

of the exponential decay method. The advantage is that no exponential fit is necessary.

Compliance is calculated from

RCT =
∫ t2

t1

P d x/(P1 −P2), (1.2)

where P1 and P2 are diastolic pressure at time points t1 and t2, respectively.

Moreover, the pulse pressure method (PPM) [80] is based on the fact that the modulus of the

input impedance of the arterial system is represented very well by the two-element Windkessel

model for the low frequencies (1st to 5th harmonic). Therefore, the pulse pressure will be

similar in the true arterial system and the two-element Windkessel model. The PPM uses an

iterative process that yields the value of CT that gives the best fit between the measured pulse

pressure and the pulse pressure predicted by the two-element Windkessels model.

1.2.5 Aortic characteristic impedance

Definition and clinical relevance

The impedance can be defined as the ratio of the pulsatile components of pressure and flow

(Figure 1.6). The impedance computed in the ascending aorta is termed input impedance

(Zi n) and is a global systemic parameter, which encompasses all effects of wave travel and

reflections of all contributions of the distal parts of the arterial tree. The aortic Zi n constitutes

the afterload of the heart. In the special case that the system is free of reflections, Zi n reduces

to Zao . The Zao is a cardinal parameter related to aortic stiffness and geometry. The prior

art has included invasive [85; 86; 87; 88; 89; 90; 91; 92; 93; 94] and non-invasive [47; 93; 95]

techniques for estimating Zao in the frequency domain, whereby Zao is approximated as the

average Zi n in the mid-to-high frequency range, the underlying assumption being that in

those frequencies the effects of reflected waves are minimal. Other approaches have proposed

time-domain calculations of the Zao based on the early systolic part of pressure and flow

waveforms [91; 94; 96; 97; 98], when reflections are considered negligible. All of the above

frequency and time domain methods require simultaneous recordings of pressure and flow in

the aorta, which are invasive (pressure) or inconvenient and expensive (flow).
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1.2. Cardiovascular monitoring

Figure 1.6 – Graphical representation of the magnitude and phase of arterial input impedance.
Taken from [99].

State of the art

Existing non-invasive methods for estimating Zao rely on pressure, flow, and geometry mea-

surements. Following the area compliance and geometry method, the characteristic impedance

at the root of the ascending aorta is calculated analytically using the area compliance and the

geometry of the ascending aorta, namely:

Zao =
√
ρ

A

1

C A
(1.3)

where ρ is the blood density equal to 1050 kg /m3, A is the cross-sectional area of the ascending

aorta, and C A is the area compliance of the ascending aorta, respectively. Another method

relies on the wave speed and geometry, and calculate Zao as follows:

Zao = ρc

A
(1.4)
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with ρ blood density, c the local pulse wave velocity, and A the luminal cross-sectional area.

Another commonly used approach is the frequency-based method which computes the charac-

teristic impedance of large vessels by averaging the modulus of the input impedance between

the fourth and tenth harmonic. The Zao can also be determined by taking the slopes of the

aortic pressure and flow waves during the early part of the ejection period, ∆P and ∆Q, and

calculating their ratio:

Zao = ∆P

∆t

∆Q

∆t
. (1.5)

Both methods rely on the fact that characteristic impedance is a pressure-flow relation in the

absence of reflections (as reflections are small in early systole and at high frequencies).

Finally, some simplified formulas have been introduced for estimating Zao . The time-derivative

peaks method suggests the following:

Zao = P ′
max

Q ′
max

, (1.6)

where P′
max and Q′

max are the maximum values of the pressure and flow time derivatives,

respectively. Finally, the peak flow method estimates Zao as follows:

Zao = (PQmax –aDBP )

Qmax
, (1.7)

where aDBP is the aortic DBP, Qmax is the maximum flow value, and PQmax is the aortic

pressure magnitude at the maximum flow value [91].

The use of all aforementioned methods is hampered by the need for either invasive or incon-

venient and expensive methods to access simultaneous recordings of aortic pressure and flow,

wall thickness, and cross-sectional area.

1.2.6 Arterial stiffness

The beating heart is the powerhouse of the cardiovascular system. With each heartbeat, the

vasculature dilates to accommodate the additional blood volume that is ejected from the

ventricles into the aorta and the pulmonary artery. The increase in pressure associated with

vascular dilation is determined by the tension in the arterial wall, which in turn is determined

by the properties affecting the distensibility of the vessel [100]. The proximal pressure pulse

generated by ventricular ejection travels across the vasculature, at a velocity determined by

arterial geometry and mechanical properties, but also by blood pressure and vascular tone.
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Pulse wave velocity (PWV), defined as the propagation speed of the pulse wave through the

circulatory system, is gaining increasing interest in the clinical assessment of arterial stiffness

[101]. This is mainly attributed to a huge body of clinical evidence that has recognized PWV

being an independent predictor of cardiovascular and all-cause mortality as well as a pivotal

factor on the prognosis of hypertension [101; 102; 103; 104]. Measurement of carotid-femoral

PWV (cfPWV) is considered as the gold-standard non-invasive method for the assessment of

aortic stiffness [101], and can be readily performed by several non-invasive techniques and

devices. Its acquisition requires the distance between the two arterial sites and the time lag

between the two pulses (as assessed via the foot-to-foot methods) [105], as illustrated in Figure

1.7.
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Figure 1.7 – Conventional foot-to-foot computation of the carotid-femoral pulse wave velocity
(PWV). ∆t : the pulse transition time between the two arterial sites, L: pulse wave travel
distance between the two arterial sites.

An increased variation in sequential cfPWV measurements may be often observed [106], due

to inherent physiological vascular and hemodynamic variations or/and measurement errors.

Although age and blood pressure are two well-established determinants of PWV, the influence

of heart rate (HR) on PWV remains controversial with conflicting results being observed in

both acute and epidemiological studies [107].

Cross-sectional population studies have demonstrated either no significant correlation [108]

or a positive correlation between cfPWV and resting HR [109; 110]. Albaladejo et al. [108]

reported that there is no significant rise in cfPWV when HR is increased. On the contrary,

Lantelme et al. [110] demonstrated that HR is an important factor of the intra-patient cfPWV

changes in the elderly. Nevertheless, those studies have investigated the potential effect of
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HR on cfPWV without isolating the effect of the concurrent increase in blood pressure with

increasing HR. Arterial stiffness is known to increase with increasing blood pressure [111].

In particular, foot-to-foot cfPWV has been theoretically and empirically shown to vary with

diastolic blood pressure [7; 112; 113].

In addition, results from existing acute experimental studies have been also inconclusive

[110]. Further to the lack of consensus on the effects of HR on PWV, the possible mechanisms

contributing to observed PWV changes with HR need to be fully elucidated; yet, many in-

vestigators have attributed HR-related changes in arterial stiffness to the viscoelasticity of

the arterial wall. With elevated HR being associated with hypertension as well as being an

independent prognostic factor of cardiovascular disease, the interaction between HR and PWV

continues to be relevant in assessing cardiovascular risk.

The aforementioned evidence concludes that it is critical to investigate more thoroughly the

blood pressure-independent cfPWV-HR relation; especially, now, that the clinical use of cfPWV

is increasing [114; 115; 116].

1.3 Numerical models of the cardiovascular system

Models of the cardiovascular system aim to disentangle the functioning of the cardiovascular

system via the mathematical analysis and computational simulations of pulsatile hemody-

namics (i.e. the dynamics of pulsatile blood flow). Cardiovascular models can be used to

understand the physiological basis underlying measured outcomes, predict the effect of vascu-

lar ageing and pathophysiology on cardiovascular properties, and study the effect of treatment

and interventions to address vascular ageing.

There exist three main modelling approaches: three-dimensional (3-D), one-dimensional

(1-D), and zero-dimensional (0-D) models. They can all describe time-varying blood pressure

and flow in the cardiovascular system, but with a different degree of precision in space. More

specifically, 3-D models consider changes in pressure and flow in the three-dimensional space,

1-D models account for the variation of pressure and flow only along the axial direction of the

arteries, and 0-D models are space-independent. The choice of dimensionality in modelling

the cardiovasculature is dictated by the scope and the precision required in the performed

study.

Lumped parameter (0-D) models involve the assumption of uniform distributions of pressure,

flow, and volume within any compartment of the model (vessel or part of vessel) at any instant

in time, while in higher dimensional models these parameters can vary spatially [117]. The

Windkessel models [118] offer an overall description of the arterial network, but they do not

allow for studying pressure and flow wave propagation phenomena in the arterial tree. On the

other hand, such an aim can be fulfilled by distributed models which take into account the
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arterial geometry. The principle behind distributed models is that they discretize the arterial

vasculature in small segments with known mechanical and geometrical properties. The wave

transmission characteristics of each arterial segment can be described using Womersley’s

oscillatory flow theory [119].

In distributed models of the arterial tree, the 1-D form of the blood flow equations describing

the conservation of mass and momentum is given as:

∂Q

∂x
+ ∂A

∂t
= 0 (1.8)

∂Q

∂t
+ ∂(Q2/A)

∂x
=− 1

ρ
A · ∂P

∂x
−2πri · τ

ρ
(1.9)

where A is the vessel cross-sectional area and τ is wall shear stress, usually estimated using

Poiseuille’s law. The two equations above have three variables: pressure P, flow Q, and area

A. Therefore a constitutive law relating cross-sectional area, A, to pressure, P, is needed to

form a system of three equations with three unknowns, which can be then easily solved using

different numerical techniques (e.g. finite differences).

Distributed 1-D models of the arterial tree have attracted great interest due to the increasing

impact of cardiovascular disease. They have provided a valuable alternative for simulating

wave propagation either in parts or the entire human arterial network, under various physio-

logical or pathological conditions [120; 121; 122; 58; 123] which are difficult to study in vivo.

These models are fairly accurate and compare well to human measurements of flow and

pressure. Moreover, they allow for the preliminary evaluation of predictive models across a

wide range of cardiovascular parameters [117] in a quick and cost-efficient way, while their

results can be rather informative of the design of clinical studies [124; 125].

Previous works have introduced a plethora of 1-D models with substantial variations in many

aspects such as the incorporation (or not) of a heart left ventricular (LV) model (essential for

grasping ventricular-vascular coupling effects), inclusion (or not) of cerebral and/or coronary

circulation, formulations for the viscoelasticity of the aortic wall, approximations for wall

shear stress and convective acceleration term and boundary conditions at terminal sites [58].

In this thesis, we used the model previously developed and validated by Reymond et al.

[58; 127]. This valuable computational tool permitted the development and validation of

monitoring methods designed in this thesis, by providing a controlled in silico environment

where the actual entire hemodynamical profile is known. In addition, it allowed us to generate

large datasets which are particularly useful for the training and testing of machine learning

algorithms.
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2 3 4

Figure 1.8 – Evolution of 1-D arterial tree models over the passage of time: (A) Westerhof’s
model in 1969 [126], (B) Reymond’s model in 2009 [58], (C) Mynard’s model in 2015 [123].

1.4 Machine learning framework

1.4.1 Supervised learning

In clinical practice, diagnosis of disease or pathology is performed by means of tests, exami-

nations or other procedures that can be applied rapidly and easily to the target population.

Sensu lato, these tests can be formulated as a form of mapping f : X → Y , where X is an input

information space and Y is the output of the test. Importantly, when a clinician conducts an

examination, he/she uses the available or measured data and performs the mapping based on

the knowledge that he/she has acquired from domain expertise and experience. This process

allows him/her for reaching a clinical decision regarding the medical state of the subject

under consideration. Nevertheless, in the majority of medical cases, determining the mapping

function f for achieving effective diagnosis is not a trivial task.

Recent advancements in computer systems and measurement techniques have allowed for

the acquisition and analysis of high-fidelity data. In addition, the increase in computational

power, storage, memory, and the generation of staggering volumes of data have permitted

computers to perform a wide-range of complex tasks with impressive accuracy [128]. All the

above have created an area full of promise for the development of novel biomedical tools

which can assist clinical decision-making.

Supervised learning refers to methods in which a model is trained on a range of inputs (or

features) which are associated with a known outcome. Once the model is successfully trained,
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it is capable of making outcome predictions when applied to new data. Predictions which

are made by models trained using supervised learning can be either discrete (e.g. positive

or negative, benign or malignant) or continuous (e.g. a score from 0 to 100). The supervised

learning techniques that yield a discrete prediction are known as classification techniques,

whereas those techniques that predict a continuous outcome are called regression techniques.

The methods developed in this thesis employ regression models. In regression analysis, we

assume a training dataset of N examples (x1, y1), . . . , (xN , yN ). We consider some particular

regression problems for which we need to relate some specific parameters (input features) to

a clinical continuous variable (output). A loss function L(ŷ , y), that measures the discrepancy

between the model predictions [namely ŷi = f (xi )] and the actual outcome instance (yi ) is

selected. The most common loss function in a regression setting is the (squared) difference

between the target and the predicted value, namely L(ŷ , y) = (ŷ − y)2.

In supervised learning, the aim is to find the function f ∗ that minimizes the expected loss over

the data generating distribution D. Therefore, the learned mapping allows for establishing

a system which can be used to map de novo elements of X to Y . The expected loss can be

approximated by averaging the loss over the available training data:

f ≈ ar g mi n
1

N

∑
L( f (xi ), yi ) (1.10)

The performance of a regression model is usually assessed using either cross-validation

or external validation methods. Cross-validation, or k-fold cross-validation, refers to the

validation technique where the dataset is partitioned in k subsets. The k-1 subsets are used

for the training and the remaining left-out subset is used for the testing [129]. This technique

helps overcome issues, such as selection bias or overfitting with the model. However, the

model performance needs to be tested for heterogeneity, which is followed through with

external validation. The use of independent datasets allows proper assessment of whether a

model can be generalised to populations outside of the study data [130].

Learning curves are a well-established diagnostic tool for regression methods that learn from

a training dataset incrementally. The model can be evaluated on the training dataset and on

a hold-out validation dataset after each update during training and plots of the measured

performance can created to show learning curves. Reviewing learning curves of models during

training can be used to diagnose problems with learning, such as an underfit or overfit model,

as well as whether the training and validation datasets are suitably representative.

In regression problems, the performance of machine learning methods is often assessed using

the correlation between estimated and reference parameter values. The limits of agreement

technique (also known as Bland-Altman analysis [131]) is also used. This technique quantifies

the accuracy of the predictive model in comparison to the reference method using the bias
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(mean error) and limits of agreement (twice the standard deviation of the errors). The limits

of agreement technique is preferred for assessing agreement between two methods since

correlation coefficients can be misleading in this context. Additional measures include the

root mean square error (RMSE), normalized RMSE, mean absolute error (MAE) or others.

This thesis uses a multitude of regression pipelines (different combinations of regression

models and features) as well as evaluation metrics. The detailed description of the machine

learning methods can be found in the literature [132; 133; 134; 135; 136; 137; 138].

1.4.2 Application in cardiovascular medicine

The booming of data has led to efforts of developing new biomedical tools using artificial

intelligence. Artificial intelligence plays a major role in the revolution in medicine by providing

systems with the capacity to learn and improve from experience without explicit human

intercession. In addition, recent technological advances have spurred an abundance of “big

data” in healthcare [139]. Machine learning algorithms, including deep learning algorithms

[140], are being used increasingly due to their flexible nature in evaluating large datasets

without the need for specified assumptions.

A large amount of biomedical and clinical data is routinely collected which is suitable for

training machine learning models to assess health in humans. In relation to pathophysiology,

the advancement in measuring and imaging techniques has encouraged the employment

of machine learning for estimating clinical pathophysiological indices and validating their

results. This promising area of research could not exclude applications on cardiovascular

health [141; 142; 143; 144]. A multitude of previous examples exists in the literature, including

applications of multiple linear regression for estimating PWV from age and routine blood

pressure measurements [145; 146], and neural networks to estimate aortic blood pressure

from radial blood pressure [142].

Arterial pulse wave signals can be acquired in the clinical setting using, for instance, applana-

tion tonometry and ultrasound systems. Concurrently, signals such as the electrocardiogram

(ECG) and photoplethysmogram (PPG) can be obtained using consumer devices such as

smartphones and fitness trackers. In addition, images of the cardiovascular system and af-

fected organs can be acquired by ultrasound, MRI, and computed tomography, resulting in

improved visual assessment of functional and structural changes associated with disease and

pathology. Importantly, the complexity of the new, available data often renders traditional

statistical methods insufficient to efficiently develop predictive tools to assist clinical decision-

making. In contrast, machine learning offers promise for developing methods to improve and

automate cardiovascular health assessment, and to guide therapeutic interventions.

Moreover, machine learning-based techniques for assessing vascular age have the potential

to improve the accessibility of vascular age assessment. Currently, blood pressure is the only
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biomarker of vascular age that is routinely measured in primary care. A notable number

of issues limit the use of other markers of vascular ageing [147]. Machine learning-based

techniques are now being developed which could be used in primary care with the minimal

additional workload, such as using routinely collected clinical data to estimate central hemo-

dynamical quantities and cardiac indices. Thus, machine learning-based techniques have

potential to improve the accessibility of vascular age assessment (Figure 1.9).

This thesis emphasizes on the clinical utility of machine learning for assessing vascular ageing

via its application for estimating key cardiovascular parameters.

Machine Learning 
Modelling

- Demographics (age, sex, BMI, etc.)
- Environment
- Disease
- Family history
- Lifestyle (smoking, diet, etc.)
- Brachial blood pressure
- Pulse waves 

Patient-speci�c data
Cardiovascular outcomes

Parameter estimation

Input
Hidden layers

CV outcome

Input B

In
pu

t A

Decision boundary

Risk classi�cation

Clinical data
Clinician-informed 

treatment

Inputs Model-derived 
outputs

- Patient monitoring (arterial sti�ness,
   central blood pressure, etc.)
- CV risk identi�cation
- Disease detection

Figure 1.9 – Machine learning applications in the assessment of vascular ageing. Adapted from
[148].

1.5 Thesis aims

The overall objective of this thesis was to develop and validate original non-invasive methods

for the estimation of cardiovascular biomarkers by leveraging the simulation capacity of a

physics-based model of the cardiovascular system and artificial intelligence. The research

presented in this thesis aims to achieve the following:

• To develop novel monitoring tools for central hemodynamics (i.e. aSBP and CO) and

cardiac contractility (i.e. LV Ees) using easily obtained non-invasive measurements.
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• To improve assessment of local and global arterial elasticity (i.e. Zao and CT ) via the

development of machine learning-based estimation methods.

• To study the intrinsic effect of heart rate on arterial stiffness as assessed by the cfPWV

measurement.

• To evaluate the performance of the methods on large sets of both clinical and in silico

data.

1.6 Thesis outline

This thesis is structured as follows. Chapters 2 introduces a novel inverse problem-solving

method for estimating aSBP and CO. Chapter 3 presents a study of the performance of the

inverse method for estimating SV using an MRI protocol, culminating in the conclusion that

our algorithm performs well in a large cohort of healthy individuals. Moreover, in Chapter

3, we wish to verify whether physics-based models provide an additional value over the tra-

ditional statistical approaches. In Chapter 4, an alternative predictive model is adopted for

the estimation of central hemodynamics and cardiac contractility using machine learning.

Chapter 5 presents an artificial intelligence-based technique for LV Ees using non-invasive

systolic timing features. Chapter 6 aims to investigate the utility of peripheral blood pressure

waves in the prediction of the contractile state of the heart by deciphering relevant hidden

morphology-based information in the waves using deep learning. The next goal arises from

the need to monitor the hemodynamic condition in humans is the evaluation of the arterial

elastic properties. In Chapter 7, we develop machine learning models for predicting Zao and

CT by leveraging the informative and easily obtained regional pulse wave velocity measure-

ments. We additionally investigate the accuracy in determining CT by exploiting the entire

peripheral blood pressure wave (Chapter 8). To complement the research for the assessment

of arterial stiffness, in Chapter 9 we aim to answer the research question that emerged in the

Introduction of this thesis (section 1.2.6): Is the PWV measurement independent on changes

in HR?. Consequently, we evaluate the effect of HR on PWV under controlled hemodynamic

conditions and especially with respect to blood pressure that is a strong determinant of arte-

rial stiffness. Finally, Chapter 10 presents a summary of the achievements of this thesis, and

directions for future work.

The chapters of this dissertation are written as manuscripts that are either published or in

preparation for publication.
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Abstract

We introduce a novel approach to estimate cardiac output (CO) and central (aortic) systolic

blood pressure (aSBP) from non-invasive measurements of peripheral cuff pressure and

carotid-femoral pulse wave velocity (cfPWV). The adjustment of a previously validated one-

dimensional arterial tree model is achieved via an optimization process. In the optimization

loop, compliance and resistance of the generic arterial tree model, as well as aortic flow,

are adjusted so that simulated brachial systolic and diastolic pressures and cfPWV converge

towards the measured brachial systolic and diastolic pressures and cfPWV. The process is

repeated until full convergence in terms of both brachial pressures and cfPWV is reached. To

assess the accuracy of the proposed framework, we implemented the algorithm on in vivo

anonymized data from 20 subjects and compared the method-derived estimates of CO and

aSBP to patient-specific measurements obtained with Mobil-O-Graph apparatus (central
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pressure) and two-dimensional transthoracic echocardiography (aortic blood flow). Both CO

and aSBP estimates were found to be in good agreement with the reference values achieving

an RMSE of 0.36 L/min and 2.46 mmHg, respectively. Our one-dimensional model can

be successfully “tuned” to partially patient-specific standards by using non-invasive, easily

obtained peripheral pressure data. The in vivo evaluation demonstrated that this method

can potentially be used to obtain central aortic hemodynamic parameters in an accurate and

non-invasive way.
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2.1. Introduction

2.1 Introduction

Central hemodynamic quantities, such as cardiac output (CO) and central aortic pressure, have

been generally shown to be more powerful predictors of clinical outcomes than corresponding

measurements obtained in the peripheral arteries such as the radial, femoral or brachial

arteries [1; 2]. Critically ill or intensive care unit patients often require continuous assessment

of cardiac output for diagnostic purposes or for guiding therapeutic interventions [3; 4; 5],

whereas several studies have shown the pathophysiological importance of central systolic

blood pressure (aSBP) as the critical index for diagnosis and prevention of cardiovascular

diseases [6; 7; 8]. But despite the diagnostic importance of central measurements, their clinical

use is severely hampered by their invasive nature (in case of central blood pressure) or cost and

need of special equipment and training (in case of aortic blood flow). Peripheral measurements

such as systolic and diastolic brachial pressure, on the other hand, are non-invasive and can

be monitored by any clinician on a regular basis [9]. This has given rise to substantial research

efforts to develop non-invasive methods for estimating central cardiovascular hemodynamics

from peripheral measurements [10; 11].

The state of the art of methods for obtaining central hemodynamic indices is based on gen-

eralized transfer functions (TF) [12; 13; 14], pulse wave analysis [15; 16; 17] or parameter

estimation from pooled clinical data [18; 19]. None of these techniques accounts for the

specific arterial tree properties of each subject [20; 21]. The use of mathematical models

constitutes a valuable tool to investigate patient-specific aspects of aortic hemodynamics,

which are difficult to assess in clinical practice. Patient-specific modelling is an emerging

field which promises to have a significant impact on clinical practice [22]. Data assimilation

has significantly promoted patient-specific modelling and has become an area of increasing

interest [23].

Prompted by previous work in the field, the hypothesis formed in this study is that central

hemodynamic parameters (i.e. CO and aSBP) can be accurately estimated by making better

use of the patient-specific information that is embedded in easily obtained non-invasive

cuff pressure and pulse wave velocity measurements. In contrast to current methods using

population-based generalized TFs, this study relies on a generalized one-dimensional (1-D)

model which is further partially personalized by using additional measurements of brachial

systolic blood pressure (SBP) and diastolic blood pressure (DBP), and carotid-to-femoral

pulse wave velocity (cfPWV). The method developed and presented in this study combines

insights from both cardiovascular modelling and data assimilation methodology. This is done

by feeding the 1-D model with the minimum number of inputs that allows for the calibrated

prediction of the aforementioned central hemodynamic parameters. The proposed framework

was evaluated with in vivo data from a population of 20 healthy adults [24]. Estimated values

of CO and aSBP were compared to the corresponding CO and aSBP values measured by a

non-invasive, validated, automated, oscillometric sphygmomanometer (Mobil-O-Graph) and
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transthoracic two-dimensional (2-D) echocardiography – Doppler, respectively.

2.2 Methods & materials

Brief description of the generic 1-D arterial tree model

In this study, we adopted a validated 1-D model of the systemic arterial tree that has been pre-

viously described by Reymond et al. [25]. The arterial tree, as depicted in Figure 2.1, includes

the main arteries of the systemic circulation, including a detailed network representation of

the cerebral circulation and the coronary circulation. In brief, the governing equations of the

model are obtained by integration of the longitudinal momentum and continuity of the Navier-

Stokes equations over the arterial cross section. Flow and pressure waves throughout the

vasculature are obtained by solving the governing equations with proper boundary conditions

using an implicit finite-difference scheme. The arterial segments of the model are considered

as long tapered tubes, and their compliance is defined by a nonlinear function of pressure

and location as proposed by Langewouters [26]. The arterial wall behavior is considered to be

nonlinear and viscoelastic according to Holenstein et al. [27]. Local arterial compliance is cal-

culated after approximating pulse wave velocity (PWV) as an inverse power function of arterial

lumen diameter, following the physiological values reported in the literature. Resistance of

the peripheral vasculature is accounted for by coupling the distant vessels with three-element

Windkessel models. At the proximal end, the arterial tree either receives a prescribed input

aortic flow waveform or is coupled with a time-varying elastance model for the contractility

of the left ventricle [28; 29]. Further details on the 1-D model can be found in the original

publications [25; 22]. The model has been thoroughly validated and is able to predict pressure

and flow waves in good quantitative and qualitative agreement with in vivo measurements,

particularly with respect to shape details.

Rationale of the proposed method

This work applied an optimization algorithm in order to partially adjust the generic 1-D arterial

tree model to the specific patient under consideration. The rationale behind this methodology

was that adjusting (some of the) model parameters may be sufficient to approximate the

measured data [31]. Before the optimization, the aim was to identify the most sensitive

parameters which mainly drive the variability of the model output.

In our analysis, peripheral SBP, DBP, and cfPWV were the model outputs. Our approach was

based on the idea that, for any individual with a given set of peripheral SBP, DBP, and cfPWV

values, there will be only one solution for the arterial tree model. Thus, if we simultaneously

adjust the properties of the model and the input aortic blood flow to capture a given peripheral

cuff pressure and cfPWV, then this allows for the calibrated derivation of CO and aSBP. In
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Figure 2.1 – Schematic representation of the 1-D model of the systemic circulation: (A) The
main systemic arterial tree. (B) The aortic arch and the coronary network. (C) The principal
abdominal aortic branches. (D) The detailed cerebral arterial tree, which is connected via
the carotid arteries (segments 5 and 15) and the vertebrals (segments 6 and 20) to the main
arterial tree (A). Adapted from [30].

order to identify and select those highly sensitive parameters, we performed a parameter

identifiability analysis [32].

Parameter identifiability analysis

The arterial tree model of this study is fully characterized by its geometry, the distensibility

of all arterial segments, and the peripheral impedances (described by terminal compliances

and resistances). Additionally, aortic flow is needed as proximal boundary condition. Table

2.1 summarizes the input and output parameters of the arterial tree model. For the following

analysis, brachial pressure was selected as the peripheral pressure model output. Thus, the

three model outputs became brachial SBP (brSBP), brachial DBP (brDBP), and cfPWV.

The sensitivity matrix V = {vi j } was calculated for the entire set of parameters in the arterial

tree model using the finite difference approximation [33]. Subsequently, the scaled sensitivity

matrix was estimated to provide the dimension-free sensitivity information. The scaled

sensitivity matrix S = {si j } was derived from the following formula:

si j =
vi j c

SCi
(2.1)

Here, according to Brun et al. [32], ∆θ j was set equal to the original set of parameters θ, i.e. θ0,
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Table 2.1 – Input and output parameters of the 1-D arterial tree model.

Corresponding variable Value
Input parameter
Blood density ρ 1050 kg/m3

Blood viscosity µ 0.004 Pa.s

Geometry
arterial_diameter,

arterial_length
(no_segments)x1 vector,
(no_segments)x1 vector

Distensibility
and terminal
compliance

C (no_segments)x1 vector

Total peripheral
resistance

R (no_terminal_segments)x1 vector

Aortic flowa aortic_flow (no_time_points)x1 vector

Output
Pressure waves pressures (no_segments)x(no_time_points) vector
Flow waves flows (no_segments)x(no_time_points) vector
aThe aortic flow is characterized by three parameters, namely the Qmax , Tper i od , Ts y stole .
no_segments: number of arterial segments, no_time_points: length of the time signal.

whereas the optimal choice for SCi was the mean value of the experimental observations for

each model output (Table 2.2).

The scaled sensitivity matrix is presented in Figure 2.2. Each element si j corresponds to the

sensitivity of the model output j = 1,2,3, i.e. brSBP, brDBP, and cfPWV, with respect to changes

in the parameter i = 1, ...,7, i.e. arterial_length, arterial_diameter, C, R, Tper i od , Ts y stole , Qmax .

In order to acquire additional information on the sign and distribution of the values in each

column j , δmsqr
j [32] was computed and ranked in decreasing order. The decreasing order

of δmsqr
j provided the parameters’ importance ranking [32] (Table 2.3). It was observed that

Qmax , C, Tper i od , and R were the most sensitive parameters. Since the sensitivities of the

remaining parameters were not negligible, we chose to approximate them using previously

published data (more details are provided in section 2.2.4. Tuning of The Generic 1-D Arterial

Tree Model section). We assumed that the approximations do not impose a significant error in

the results due to their small sensitivities. Based on the aforementioned considerations and

the resulted importance ranking, we partitioned the set of parameters θ into two components

(θT
K ,θT

K̄
) with K = 3, namely:

θT
K = {C ,R,Qmax },θT

K̄
= {ar ter i al_leng th, ar ter i al_di ameter,Tper i od ,Ts y stole }.

Only the component θT
K was to be estimated from the measured data whereas the component

θT
K̄

(i.e. the remaining parameters) was fixed at a priori value; this is a common practice in

identifiability analysis [32]. Specifically, the arterial_length was adjusted based on height,
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Table 2.2 – Description of the ∆θ j and SCi parameters.

Parameter Unit ∆θ j = θ0

Qmax mL/s 436.23
C mL/mmHg 1.90
Tper i od ms 790.00
R mmHg.s/mL 1.00
arterial_lengtha cm 180.00
arterial_diameterb cm 2.94
Ts y stole ms 270.00

State Unit SCi

Brachial SBP mmHg 117.55
Brachial DBP mmHg 77.25
cfPWV m/s 6.89
a Arterial length is defined with respect to height. The reference state of the arterial tree
model corresponds to an individual with a height equal to 180 cm.
b Arterial diameter is defined with respect to the diameter of the aorta. The alteration of
the diameter for the different arteries is done uniformly.

Table 2.3 – List of the input model parameters’ importance ranking.

Parameter δ
msqr
j

Qmax 0.52
R 0.48
Tper i od 0.42
C 0.26
Ts y stole 0.11
arterial_diameter 0.1
arterial_length 0.08

arterial_diameter was determined based on [34], Tper i od was directly assigned the patient’s

measured HR and Ts y stole was set to a HR-related value according to [35]. The hypothesis

was that the subset of parameters, i.e. C, R,Qmax , can be uniquely estimated from the model

outputs, i.e. brSBP, brDBP, and cfPWV.

In order to verify our hypothesis, we had to confirm that the set θT
K was identifiable or, in

other words, that θT
K was sufficient to detect the variability in the model outputs (i.e. brSBP,

brDBP, and cfPWV). If θT
K is classified as identifiable, then we can deduce that brSBP, brDBP,

and cfPWV can estimate θT
K in a unique way.

The joint influence of the parameters θT
K parameters on the model output was considered. To

this respect, the collinearity of parametric sensitivity was used [32]. To calculate collinearity,

we first normalized the scaled sensitivities S̄ and we defined the collinearity index γK as
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Figure 2.2 – Scaled sensitivity matrix for the entire set of input parameters of the 1-D arterial
tree model. Adapted from [30].

follows:

γK = 1

mi n‖b‖=1‖S̄Kβ‖
= 1√

λK

(2.2)

where S̄K is the submatrix of the normalized sensitivity matrix that consists of the columns

that correspond to θT
K , and λK is the smallest eigenvalue of S̄T

K S̄K [32], [36].

According to Brun et al. [32], a subset of parameters can be classified as identifiable if the

collinearity index γK is smaller than 20. In our analysis, γK was found to be equal to 6.90 and

thus, we deduced that there is a unique solution of model parameters for a given set of model

outputs (i.e. brSBP, brDBP, and cfPWV).

Tuning of the generic 1-D arterial tree model

After proving the validity of our primary hypothesis, the following step was to find the adjusted

input model parameters that produce as output the given measured data (i.e. brachial SBP and

DBP, and cfPWV). In this respect, the global compliance and global peripheral resistance of the

entire arterial tree as well as the input aortic flow were adjusted. This was done by multiplying

the compliance of each arterial segment by a common scaling factor. Similarly, a different

scaling factor was used to adjust all peripheral resistances. Finally, Qmax was modified by

multiplication with a third scaling factor. An optimization algorithm was employed to derive
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the optimal compliance, resistance and aortic flow peak scaling factors. Once the “tuning” was

completed, the 1-D model used the adjusted parameters and produced the flow and pressure

waves for every segment of the arterial tree. From the solution, we were able to obtain the flow

and pressure at the aorta, namely to compute the CO and aSBP.

In this approach, the distensibility and the terminal compliance (C) of each arterial segment

were modified in a uniform way for young individuals. For older or hypertensive subjects,

stiffening was considered as nonuniform and more pronounced in the proximal aortic path

[37]. The importance of age-related nonuniform aortic stiffening for central hemodynamics

and wave reflections has been demonstrated in previous studies [38]. In order to account

for this, data for the age-related local nonuniform aortic stiffening were obtained from [39].

The nonuniform stiffening of the aorta was considered by changing the relative regional

distensibility of the proximal aorta (segments 1-95-2-14-18-27 of the arterial tree in Figure 1.1)

through multiplication with an age-related proximal factor (Figure 3). Therefore, two scaling

factors were considered: a global scaling factor multiplied with all arterial compliances and

a proximal scaling factor that was additionally multiplied only with the compliance of the

proximal aorta. This was to satisfy the relative relation between the proximal distensibility

and the peripheral distensibility. Figure 2.3 reports the scaling factors with respect to age. The

goodness of fit was high with a coefficient of determination, R2, equal to 0.99.

Figure 2.3 – Variation of the proximal scaling factor with respect to age for adjusting the relative
distensibility of the proximal aorta. Adapted from [30].

Resistance (R) was altered in a uniform way for all terminal vessels in the model. Aortic flow

was prescribed as an uncalibrated generic physiological wave, which was scaled with respect
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to amplitude and time during the adjustment process. This concept was implemented in an

iterative optimization process. The reason for employing an optimization process was to avoid

searching the entire input model parameters space. Moreover, the geometry of the arterial

vessels (i.e. arterial_length and arterial_diameter) was adjusted based on the age, gender,

height, and body surface area (BSA) of each subject. For this purpose, data which associate

aortic diameter size with age, gender and BSA were used from previous studies [34]. The length

of the generic arterial tree segments was normalized and, subsequently, was multiplied by a

scaling factor so as to be adjusted to the height of each subject.

Optimization process

A schematic representation of the optimization algorithm is shown in Figure 2.4. In the

first optimization iteration, the structure of the algorithm was as follows: an uncalibrated

generic aortic flow curve was used as initial input to the model (Figure 2.5). For the generic

uncalibrated aortic flow, an “average” physiologically shaped wave was selected. The scaling

was performed based on the adjustment of three characteristic values, i.e. the velocity peak

(Qmax ), time period (Tper i od ), and systolic duration (Ts y stole ) (Figure 2.5). The Tper i od of the

uncalibrated aortic wave was adjusted with respect to the measured HR. Previously published

data on the HR-related changes in systolic duration [35] were used to adapt the Ts y stole with

respect to the given HR. Therefore, only Qmax remained to be optimized. A random Qmax ,

and therefore SV, was selected for the initial aortic flow input. The 1-D model subsequently

computed all flows and pressures throughout the arterial tree, including the measured vari-

ables (brachial SBP and DBP, cfPWV) as well as the unknown quantities of interest (CO, aSBP).

The model was expected to produce an inaccurate prediction of flows and pressures due to

inaccurate model parameters and the inaccurate input aortic flow for the specific subject

under investigation. Similarly, the calculated cfPWV was likely not the same as the measured

cfPWV.

To address this issue, the non-invasive, patient-specific measurements were integrated into the

model using a gradient-based optimization algorithm. The reference compliance, resistance

and Qmax of the generic arterial tree were adjusted by multiplication with different scaling

factors until brachial SBP, DBP, and cfPWV were correctly predicted for the uncalibrated input

aortic flow (Figure 2.5). Scaling factors for the compliance were chosen so that a range of

[0.10, 3.80] mL/mmHg was covered for total arterial compliance. These values correspond

to an extensive range of arterial tree stiffness values [26; 40]. The reference total peripheral

resistance in the model was 1 mmHg.s/mL. The scaling factor (which was multiplied with

the reference resistance) varied within [0.40, 2.00] in order to cover normal values of total

peripheral resistance (e.g. [0.40, 2.00] mmHg.s/mL) [41]. For scaling Qmax , the scaling factors

were chosen so as the corresponding cardiac output is within [2.00, 8.00] L/min [42]. The

limits were chosen so that the corresponding quantities as well as the pressure and flow values
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Figure 2.4 – Schematic representation of the optimization process for predicting non-invasive
cardiac output and central systolic blood pressure. Adapted from [30].

generated by the arterial tree model comply with physiological hemodynamic conditions. It

is to be emphasized that all parameter ranges were wider than what is to be physiologically

expected, in order provide the optimization algorithm with sufficient solution space. The

optimization loop ran and the process was repeated until convergence in terms of both

brachial pressure and cfPWV was reached. The tolerated error for capturing brachial SBP

and DBP was set to 0.01 %, whereas for cfPWV value it was 0.01 %. A maximum number of

iterations (N i ter
M AX = 100) was also defined for each optimization process. If the algorithm did

not converge, the process was repeated starting from a different initial solution. In order to

ensure that the algorithm was not stalled by a local minimum, several runs starting from a

different random initial solution were performed.

Model-derived pulse wave velocity

The PWV was derived using the tangential method [43]. The method uses the intersection

point of two tangents on the arterial pressure wave as a characteristic marker. The first tangent

is defined as the line that passes tangentially through the initial systolic upstroke, i.e. the

maximum of the first derivative. The second tangent line is the horizontal line passing through
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Figure 2.5 – Uncalibrated generic aortic flow waveform that is used as input to the 1-D arterial
tree solver. Adapted from [30].

the minimum pressure point. Since our cohort study consists of cfPWV data, the method was

applied to estimate the pulse transit time (PTT) between the carotid artery and the femoral

artery. Total arterial length was determined by summation of the lengths of the arterial

segments within the transmission path, i.e. the relevant carotid-femoral path (segments 5, 3,

2, 14, 18, 27, 28, 35, 37, 39, 41, 42, 44 of the generic arterial tree in Figure 2.1). Finally, the value

of cfPWV was calculated by dividing the total length by the PTT.

Measurement protocol

A preliminary assessment of the proposed methodology was carried out by testing the predic-

tions of the method against in vivo data that were previously collected by Papaioannou et al.

[24]. The study population included twenty-four subjects who were referred for non-invasive

cardiovascular risk assessment. Subjects with risk factors or those receiving medication were

also enrolled. Patients with aortic valve disease or arrhythmias were excluded. The measure-

ment protocol was approved by the Scientific Board of Laikon General Hospital (Reference no:

E53610/7/2013).

For each subject, brachial pressure waves were recorded at the brachial artery by oscillometric

sphygmomanometry using the Mobil-O-Graph device (I.E.M. GmbH, Stolberg, Deutschland)

[44; 45]. Central pressure waves were extracted by mathematical transformation of brachial

pressure waves [46]. The cfPWV was computed using the SphygmoCor apparatus (AtCor

Medical Pty Ltd, West Ryde, Australia). Pressure waves were recorded at the carotid and femoral

artery by applanation tonometry (Millar SPT-301, Millar Instruments, TX, USA) as previously

described [24]. SphygmoCor also provided recordings of the radial pressure waves [23] and was

subsequently used for acquiring the aortic pressure waves [18] through the use of a generalized

50



2.2. Methods & materials

transfer function. Despite the fact that both devices yield equally precise estimates, in the

analysis we made use of the data measured with the Mobil-O-Graph in order to ensure that

brachial and aortic pressure were recorded simultaneously. Especially, the brachial pressure

data were used as input variables to the method and the corresponding central pressure data,

measured using the same device, were used for the validation. Nevertheless, for the sake of

completeness of this work, a second analysis using the SphygmoCor-derived pressure data

was performed.

Two measurements of the aortic peak velocity profile at the ascending aorta were performed

via transthoracic two-dimensional echocardiographic examination [24]. For this study’s simu-

lations, the average of the two measured signals was used. Aortic diameters were extracted

from Doppler M-mode and CO was computed by applying the Witzig-Womersely theory [47]

considering the profile of peak velocity. Cross-sectional area was assumed to be constant.

All the recorded waveforms were exported as raw data and subject to additional preprocess-

ing. For further details on the measurements protocol, the reader is referred to the original

publication [24].

Validation of the method-derived estimations

Out of the 24 subjects, four were excluded from the study due to unreliable or insufficient

data. The population samples included both women (n = 9) and men (n = 11) and covered an

age range of 38.1±12.6 years. For each subject, the processed data from the recordings were

used and the previously described methodology was adapted. The descriptive values of the

hemodynamic parameters and clinical characteristics of the study population (n = 20) are

reported in Table 2.4.

We first implemented the method using as input the peripheral pressure data from the Mobil-

O-Graph device. The model CO estimates were compared to the in vivo measurements via

transthoracic echocardiography, whereas the predicted aSBPs were evaluated against the

respective Mobil-O-Graph central pressure data. Then, the process was repeated using as

input the peripheral pressure data from SphygmoCor. Similarly, COs were validated using as

reference the transthoracic echocardiographic data and aSBP predictions were compared to

the in vivo measurements from the respective SphygmoCor-derived central pressure data.

Sensitivity to measurement errors

In order to assess the sensitivity of the method to errors in the measurements of the brachial

pressure and the cfPWV, the analysis was repeated on the entire study population after (i) de-

creasing the brSBP with 10 % and (ii) increasing the brSBP with 10 %. In a similar approach, the

effect of overestimating and underestimating the cfPWV value with 10 % was also examined.
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Statistical analysis

The agreement, bias, and precision between the method-derived predictions and the in vivo

data were evaluated by using the Pearson’s correlation coefficient (r ), intraclass correlation

coefficient (ICC ), the Bland-Atman analysis and the root mean square error (RMSE). The

statistical analysis was performed using the software package Prism (Prism 6, GraphPad

Software Inc., San Diego, USA).

2.3 Results

The comparisons between the model-derived estimations and the reference data are presented

below.

Comparison between the model-derived CO estimates and the reference data

Figure 2.6 shows the comparison between the model-CO estimates and the in vivo measure-

ments via transthoracic echocardiography using the pressure data from the Mobil-O-Graph

device. The corresponding Bland-Altman plot is depicted in Figure 2.6 (lower panel). The

RMSE was found to be equal to 0.36 L/min. In 55 % of the cases, the difference between model-

CO and reference CO was found to be below 0.30 L/min. Parameters of accuracy, correlation

and agreement of CO estimation by the method in comparison to the reference method are

summarized in Table 2.5. Figure 2.7 shows the model-predicted CO values compared to the in

vivo echocardiographic CO values using the SphygmoCor pressure data. The Bland-Altman

plot is given in Figure 2.7 (lower panel). The RMSE was 0.81 L/min and the Pearson’s correla-

tion coefficient was equal to 0.73 (Table 2.5). The difference between model-CO and reference

CO was less than 0.3 L/min for the 25 % of the cases.

Comparison between the model-derived aSBP estimates and the reference data

The scatterplot between the non-invasive aSBP predictions versus the in vivo measurements

from the Mobil-O-Graph is presented in Figure 2.8 (top panel). The method yielded an accurate

estimation of aSBP, with a RMSE of 2.46 mmHg, a Pearson’s correlation coefficient of 0.98 and

a high ICC of 0.98. The Bland-Altman analysis, as given in Figure 2.8 (lower panel), showed a

good agreement between the model and the reference aSBP values. The difference between

model-aSBP and reference aSBP was less than 1.50 mmHg for the 30 % of the cases, whereas

in 60 % of them it ranged between 1.50 and 3.50 mmHg and only 10 % exceeded the 3.50

mmHg. Parameters of precision, correlation and agreement between the estimates and the

real values are reported in Table 2.6. Figure 2.9 shows the aSBP predictions compared to the in

vivo SphygmoCor aSBP values. The Bland-Altman plot is presented in Figure 2.9 (lower panel).

The RMSE was equal to 3.42 mmHg and the Pearson’s correlation coefficient was equal to 0.98
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Table 2.4 – Descriptive hemodynamical parameters and clinical characteristics of the study
population (n = 20).
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Table 2.5 – Parameters of accuracy, correlation and agreement of CO estimation by the model
in comparison to the reference method.

Parameter
Value

(using Mobil-O-Graph
pressure data)

Value
(using SphygmoCor

pressure data)
Mean difference [L/min] 0.04 0.04
Standard deviation of
difference [L/min]

0.36 0.83

Limits of agreement [L/min] (-0.66, 0.73) (-1.54, 1.63)
Root mean square error
[L/min]

0.36 0.81

Pearson’s correlation
coefficient

0.91 0.73

Intraclass correlation
coefficient

0.91 0.69

Table 2.6 – Parameters of accuracy, correlation and agreement of aSBP estimation by the model
in comparison to the reference method.

Parameter
Value

(using Mobil-O-Graph
pressure data)

Value
(using SphygmoCor

pressure data)
Mean difference [mmHg] -0.27 0.82
Standard deviation of
difference [mmHg]

2.51 3.41

Limits of agreement
[mmHg]

(-5.07, 4.52) (-5.69, 7.33)

Root mean square error
[mmHg]

2.46 3.42

Pearson’s correlation
coefficient

0.98 0.98

Intraclass correlation
coefficient

0.98 0.97
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Figure 2.6 – Comparison between the estimated CO values and the reference in vivo data (using
the Mobil-O-Graph pressure data). Top panel: Scatterplot between the values of CO derived
from the method and the values of CO measured with 2-D transthoracic echocardiography
(solid and dashed line represent equality and linear regression, respectively). Lower panel:
Bland-Altman plot for CO prediction by the model versus 2-D transthoracic echocardiographic
measurement. Limits of agreement are defined by the two horizontal dotted lines. Adapted
from [30].

(Table 2.6). For 20% of the cases, the difference between model-aSBP and reference aSBP was

less than 1.50 mmHg, for 40 % of them it ranged between 1.50 and 3.50mmHg and for the

remaining 40 % it was found to be above 3.50 mmHg.

Sensitivity of model predictions to input parameter measurement errors

Table 2.7 shows the sensitivity of the model predictions in terms of CO and aSBP when a

±10 % error is introduced in the measurements of brachial SBP and cfPWV. In case of an

overestimation of the brSBP, it was noted that CO and aSBP estimates were sensitive to the

erroneously measured brachial SBP with relative (with respect to the actual value) errors of

26.76±17.01 % and 8.98±5.45 %, respectively. When an underestimation of the brSBP was

assumed, the errors in CO and aSBP were calculated to be -20.67 ± 18.11 % and -11.88 ± 4.28
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Figure 2.7 – Comparison between the estimated CO values and the reference in vivo data (using
the SphygmoCor pressure data). Top panel: Scatterplot between the values of CO derived
from the method and the values of CO measured with 2-D transthoracic echocardiography
(solid and dashed line represent equality and linear regression, respectively). Lower panel:
Bland-Altman plot for CO prediction by the model versus 2-D transthoracic echocardiographic
measurement. Limits of agreement are defined by the two horizontal dotted lines. Adapted
from [30].

%, respectively.

Likewise, a deliberate error of ±10 % was imposed to the cfPWV measurement. The algorithm

was re-employed for the new input. The aSBP prediction seemed to be more robust to errors

in cfPWV measurements than to errors in brSBP measurements (Table 2.7). A ±10 % error in

the in vivo cfPWV rendered small errors in the aSBP estimations, equal to -4.34 ± 4.41 % and

-3.74 ± 4.03 %, respectively. Relatively higher deviations of -12.73 ± 6.23 % and 11.84 ± 9.56 %

were reported for the CO estimates.
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Figure 2.8 – Comparison between the estimated aSBP values and the reference in vivo data
(using the Mobil-O-Graph pressure data). Top panel: Scatterplot between the values of aSBP
derived from the model and the values of aSBP measured with Mobil-O-Graph (solid and
dashed line represent equality and linear regression, respectively). Lower panel: Bland-Altman
plot for aSBP prediction by the model versus in vivo measurement using the Mobil-O-Graph
device. Limits of agreement are defined by the two horizontal dotted lines. Adapted from [30].

2.4 Discussion

In the present study, we implemented and assessed a novel method for predicting CO and

aSBP based on non-invasive measurements of peripheral (brachial) pressure and pulse wave

velocity. The method is based on the adjustment of a generic 1-D arterial model using the

non-invasive recordings of the brachial cuff-based systolic and diastolic blood pressures and

cfPWV, which are easily obtained in a clinical setting. The 1-D dimensional model of the

arterial tree has been thoroughly validated in vivo and provides realistic flow and pressure

waveforms [25; 22]. An optimization process was developed in order to fuse the computational

model with the measurement data. We adjusted arterial model parameters such that model

predictions fit the non-invasive recordings and thus render the generic model closer to a

patient-specific model. This study demonstrated that creating a version of the generalized CV

model closer to each patient’s standards can potentially enhance the accuracy in the CO and

aSBP prediction.
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Figure 2.9 – Comparison between the estimated aSBP values and the reference in vivo data
(using the SphygmoCor pressure data). Top panel: Scatterplot between the values of aSBP
derived from the model and the values of aSBP measured with SphygmoCor (solid and dashed
line represent equality and linear regression, respectively). Lower panel: Bland-Altman plot
for aSBP prediction by the model versus in vivo measurement using the SphygmoCor device.
Limits of agreement are defined by the two horizontal dotted lines. Adapted from [30].

Patient-specific models of the human vasculature are confronted with significant challenges

that pertain to the unique characteristics of each individual. Geometry, in particular, cannot

be completely defined for each arterial segment throughout the vasculature. In this study, the

geometry of an individual was approximated by using data from a previously published study

[34]. These data allowed for an estimation of the aortic size without the need for additional

complicated or costly measurements. As anticipated, the aortic size approximation slightly

deviated from the actual aortic dimension. However, having at our disposal the aortic diame-

ter values (directly measured from echocardiography), we observed that the approximated

diameter of the ascending aorta did not differ significantly from the true measured values (the

difference was equal to 0.25 ± 0.44 cm).

Peripheral non-invasive pressure measurements proved to be adequate to adjust the arterial

tree model and were demonstrated to be informative to predict aortic hemodynamics. CO

and aSBP estimates were found to be in good agreement with the reference methods. Figure

2.10 shows an aortic pressure waveform as resulted from the 1-D model. The model-derived
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Table 2.7 – Estimates of relative errors in CO and aSBP after introducing: (i) a ±10 % error in
the brachial SBP measurement and (ii) a ±10 % error in the cfPWV measurement.

Introduced error
CO estimate error [%]

mean±SD
aSBP estimate error [%]

mean±SD
+10 % brSBP 26.76±17.01 8.98±5.45
-10 % brSBP -20.67±18.11 -11.88±4.28
+10 % cfPWV -12.73±6.23 -4.34±4.41
-10 % cfPWV 11.84±9.56 -3.74±4.03

aortic pressure wave bears all the characteristic details and shape of a physiological pressure

signal. This observation further strengthens the physiological relevance of our results. To

our knowledge, this novel work constitutes the first method that makes use of only three

easily obtained inputs (e.g. non-invasive brSBP and brDBP, and PWV) to successfully adjust

a 1-D generic arterial tree model and accurately predict hemodynamics at the aortic root

(e.g. CO and aSBP). The fusion of clinically relevant non-invasive data with theory-based

modelling avoids simplified assumptions that have been proposed by previous studies [18; 48].

Additionally, it should be noted that the clinical application of the proposed framework is

highly facilitated by the fact that PWV can be routinely measured in clinical practice and has

been identified as an independent predictor of cardiovascular disease [49; 50; 51], especially

when it can be translated in conjunction with pressure measurements.

We performed an identifiability analysis as proposed by Brun et al. in order to identify the

most sensitive parameters that drive the variability in the model output (i.e. brSBP, brDBP,

and cfPWV). This analysis can be very informative to guide the strategy for inverse problem-

solving methods. The sensitivity matrix demonstrated that Qmax was the most sensitive

determinant of the model output, which may be explained from the fact that aortic flow

serves as the proximal boundary condition. Total peripheral resistance, Tper i od and arterial

compliance followed. The sensitivity to Tper i od was directly addressed by exploiting the HR

information. The high sensitivities of compliance and resistance can most likely be attributed

to our selection of the model outputs, namely bSBP and brDBP, and thus pulse pressure (PP)

and mean arterial pressure (MAP). Arterial compliance is a major determinant of PP [52] and

total peripheral resistance dictates MAP [53].

The mitigation of errors that are inevitably present in clinical measurements challenges the

reliability of oscillometric devices. The majority of automatic cuff devices for measuring blood

pressure are based on generalized models to estimate blood pressure from an oscillogram [54].

This can limit the accuracy of the device in a certain pressure range. A noteworthy approach

has been proposed by Liu et al. [55]. They used a physiologic model in conjunction with model

fitting [56]. The method has achieved to maintain blood pressure estimation accuracy whereas

it was proven to be less sensitive to common physiologic deviations in the oscillogram. Here,

artificial errors in brSBP and cfPWV measurements were manually introduced in a discrete way
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in order to study the effect of each error on the predictions. However, it should be emphasized

that measurements errors in brSBP and cfPWV may also happen concurrently and be highly

interdependent.

The sensitivity analysis in measurements’ errors in brSBP and cfPWV demonstrated evidence

that the CO and aSBP predictions are expected to be more sensitive to errors in brSBP than

to errors in cfPWV. The aSBP prediction seems to be determined mainly from the brSBP

information, while brSBP is rather sensitive to the resistance (sensitivity matrix, Figure 2.2)

that dictates the mean blood pressure. The strong sensitivity of aSBP estimation to brSBP

errors is to be expected, since the input brSBP and the estimated aSBP are strongly related

to mean blood pressure, which is practically the same in both central and peripheral arterial

sites.

CfPWV, on the other hand, is related to arterial compliance, which is a weaker determinant of

stroke volume and CO, compared to arterial resistance and by extension to mean pressure,

as also described in earlier work by Stergiopulos et al. [57]. In our analysis, this is clearly

demonstrated in the scaled sensitivity matrix (Figure 2.2); the sensitivity between cfPWV

and Qmax , and thus CO, is approximately 2.5 times smaller (equal to 0.42) compared to the

sensitivity between brSBP and Qmax (equal to 1.00).

In order to evaluate the method’s predictions, data from Mobil-O-Graph device were used.

However, SphygmoCor data were also available and, therefore, we additionally compared our

method’s estimates using the data from the SphygmoCor device. Overall, a better performance

was observed when pressure data from Mobil-O-Graph were used. It is possible that the

discrepancies in CO and aSBP estimations between the two office devices may be attributed to

differences between the two measurement techniques. First, differences exist in the technique

of signal acquisition as well as the arterial site of recording; Mobil-O-Graph uses oscillometry

at the brachial artery level and SphygmoCor uses applanation tonometry at the radial or

carotid artery. Furthermore, differences exist in the computational method of central blood

pressure derivation; Mobil-O-Graph applies the ArcSolver as previously described in [58; 59]

and [60], whereas SphygmoCor applies a generalized transfer function [18]. The central

aortic pressure derived from Mobil-O-Graph is simultaneously recorded with the brachial

pressure. In contrast, SphygmoCor uses a generalized transfer function to transform the

radial pressure wave into aortic pressure wave [48]. Since brachial pressure is the one that

drives the optimization process, Mobil-O-Graph’s simultaneous brachial and central pressures

acquisition may potentially lead to a more accurate aortic-peripheral PP amplification and

thus more accurate prediction. Additionally, SphygmoCor’s generalized transfer function is

likely to deviate from our partially individualized method at a greater extent than Mobil-O-

Graph’s “per patient” scheme. Finally, differences in measurement accuracy between the two

apparatuses may be also due to different calibration methods [60].

Part of the state of the art has focused on the improvement of the already available generalized
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TFs. Swamy et al. have presented a work on an adaptive generalized TF using information on

the wave propagation delay time between aortic and peripheral pressure waves [61]. However,

this information was obtained using prior knowledge of the aortic flow. Some of the previous

authors have proposed an improved adaptive generalized TF using arterial wave transmission

and reflection coefficient information [62]. Their results have showed significant accuracy

improvement in aSBP estimations (RMSE equal to 3.43 mmHg), especially in patients with low

PP amplification.

Hahn et al. have introduced a novel approach on the central aortic pressure wave from

measured peripheral pressure wave by employing an individualized transmission line (TL)

model [63]. The method was evaluated on swine data and achieved a high correlation of

0.92 between the predicted aSBP and the reference aSBP. Nevertheless, the use of a TL model

may be regarded as a simplification due to the actual curvature of the arterial line and the

multiple reflection sites that may not be accurately described by a lumped terminal impedance.

Moreover, the methods presented above employ a single pressure waveform and thus, the

individualization is considered to be more simplified compared to a technique that fuses

multiple non-invasive measurements.

Approaches comparable to ours have been developed to address the challenges of patient-

specific hemodynamic monitoring. Tosello et al. [64] have proposed a new technique for

determining central blood pressure using a multiscale mathematical model which is adjusted

based on age, height, weight, brachial pressure, left ventricular end-systolic and end-diastolic

volumes and aortic PWV. The estimation derived from their method presented low perfor-

mance (significant overestimation of 7.8 mmHg for aSBP prediction) when compared against

data from the SphygmoCor device. In their work, a large number of input variables are needed,

including also central qualities (e.g. end-systolic and end-diastolic volumes). Here, however,

aSBP can be predicted with a higher accuracy and by using fewer input parameters for the

partial individualization of the model. Therefore, this simplifies the measurement process

and potentially decreases the total cost of monitoring. Recently, Guala et al. published a

validation of the same multiscale model using invasive catheter data [65]. Their model pro-

vided an underestimation of both central systolic and diastolic pressure values; the difference

between the invasive aortic pressure and the model-derived estimates was 4.30±16.70 mmHg

for central systolic pressure and 3.80 ± 10.40 mmHg for central diastolic pressure. Validation

using invasive data should be conducted for our proposed methodology, so as to be able to

perform a fair comparison between the performance of the two models.

Additionally, important cardiovascular risk predictors have recently been estimated from the

fusion of multiple non-invasive measurements (i.e. pulse pressure waveforms at the arm and

the ankle) [66]. The method provides predictions of central SBP and PP, PP amplification, and

PTT. The RMSE for aSBP was reported to be rather low (1.99 mmHg). An advantage of the

technique is that it also yields the entire central pressure waveform. Nevertheless, the use of a
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lumped-parameter model to describe the arterial tree may not be sufficient for considering

the intermediate reflections between the central and the distal arterial sites. Hence, this

may be considered as a simplification when compared to a complete model of the systemic

circulation.

A particularly interesting study was performed by Swamy et al. [67], in which CO is estimated

using peripheral pressure waves from multiple arterial sites. In the proposed methodology,

the aortic pressure wave is computed by applying a multichannel blind system identification

algorithm [68]. The concept is based on the assumption that an arterial path between two

arterial sites can be described by a transfer function of a finite impulse response (FIR) filter.

The filter parameters were defined through a deconvolution algorithm. Subsequently, CO

was estimated via fitting a Windkessel model to the computed aortic pressure wave. The

lumped parameters of the Windkessel model (compliance and resistance) were calculated by

extracting the time constant from the aortic pressure wave. Although this method illustrated

an effective way of identifying CO (with a normalized RMSE of 12.9 %), it constitutes a relatively

simplified approach which is based on a mathematical transfer function with less physiological

information on the patient-based cardiovascular system in comparison to a complete model

of systemic circulation.

Fazeli and Hahn have also proposed an improved Windkessel approach for individualized CO

and total peripheral resistance (TPR) estimation [69]. Their approach is based on “tuning” a

Windkessel model using measurements of systolic, diastolic, and mean arterial blood pressure.

The method outperformed the standard Windkessel method (prediction improved by 16 %)

providing also an optimal patient- and time-specific time constant that is needed to estimate

CO and TPR. A limitation of the study pertains to the simple linear model that was used to

associate pressure and arterial compliance. This may be far from the actual highly nonlinear

relationship between the two [70] and may affect the validity of the method when applied on a

wider range of pulse pressure values.

Limitations

A number of limitations need to be considered. The gold-standard technique for central

aortic pressure is an invasive, catheter-based measurement. In this study, evaluation was

conducted using central aortic pressure waves obtained from the Mobil-O-Graph device.

Although the Mobil-O-Graph has been successfully validated in the past [44], significant errors

may be present in the Mobil-O-graph estimations. Therefore, the validation presented here is

only of relative and limited value. It cannot be used to demonstrate any potential advantage

in comparison to the existing generalized mathematical models. Similarly, the reference

method used for aortic flow was transcutaneous echocardiography, which can only allow

us to conclude that the prediction of this method is a fair estimate of the true value. Future

studies using gold-standard invasive measurement techniques are required for full validation
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Figure 2.10 – Arbitrary aortic pressure waveform that was yielded from the 1-D arterial tree
solver. Adapted from [30].

of the proposed method. From an ethical perspective, it was not possible to perform invasive

measurements in the context of a validation study.

Another limitation lies in the small sample size of older subjects who exhibit high PWV values.

Also, the subject cohort is quite uniform in terms of PP (e.g. standard deviation of PP equal to 4

mmHg). This does not allow us to assess how well the method adapts to large variations in PP.

To further enhance the robustness of the proposed method, validation on a larger population

(including a larger number of patients older than 50 years and a wider range of PP levels)

should be performed.

Furthermore, the integration of previously published data in the adjustment of arterial di-

ameter leads to an “average” version of the 1-D cardiovascular model in terms of geometric

configuration. Even if we tune the model with the patient-specific measurements that we

have at our disposal, the patient-specific character of the method cannot be entirely justified.

However, a fully personalized model would not be possible, since this would require us to

obtain numerous non-invasive and invasive measurements for every individual. Since CO is

known to be particularly dependent on arterial geometry measurements [71], individualized

CO prediction still remains a challenge.

In addition, the use of previously published data on HR-related systolic duration leads to an

approximation of the aortic flow wave. However, the difference between the approximated

Ts y stole and the actual Ts y stole (derived from the reference ultrasound aortic flows) was found

to be -10.05 ± 6.72 ms and thus not very considerable. Furthermore, the sensitivity analysis

demonstrated that the model outputs were less sensitive to changes in Ts y stole (Figure 2.2).
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When the actual systolic duration was used as an input to the model, the CO and aSBP predic-

tions were improved by 0.84 % and 0.63 %, respectively. As anticipated, the more information is

embedded into the system, the more accurate our predictions become. However, our assump-

tions do not seem to significantly underestimate the prediction capacity of our method in the

study population. Moreover, we should comment that the aortic flow wave that we imposed as

a proximal boundary condition had a constant shape (only Qmax , Tper i od , and Ts y stole were

modified), while the systolic duration was defined as a relative approximation with respect to

HR. These points also contribute to characterizing the model as partially patient-specific.

This study demonstrates the method’s capacity to predict absolute CO for each subject. How-

ever, clinical research is particularly interested in monitoring CO changes within the same

patient [72]; especially for patients in the intensive care unit [73]. Thus, another limitation per-

tains to the lack of available data to validate changes in the estimated CO within an individual.

Our future work envisages the evaluation of our method on inter-patient changes in CO.

Another potential limitation may be the inconvenience in acquiring cfPWV. The cfPWV mea-

surement requires sequential recording of the carotid and femoral pressure pulse via appla-

nation tonometry [74; 75]. The measurement process also takes some time to obtain the two

signals sequentially, whereas it is intrusive in that it requires palpation of the femoral pressure

pulse near the groin [76]. Alternatively, the volume-clamp technique [77] proposes the use

of the finger pressure waveform for estimating aSBP and CO. Nevertheless, this technique

excludes the arterial stiffness information embedded in cfPWV which potentially enhances

the physiological relevance of CO calculation.

Nobody can exclude that certain combinations of cardiac and arterial parameters may yield

similar pressure and PWV values. We tested our method on a synthetic case of reduced con-

tractility in the presence of increased total peripheral resistance and assessed its performance.

Particularly, the cardiac contractility was reduced by decreasing the end-systolic elastance

(Ees) by 20 % while total peripheral resistance was increased by 40 % in order to maintain

pressure at normal levels. This yielded brachial SBP and DBP, and cfPWV, which were isolated

and used as input to the inverse method. After the optimization process, the estimated CO and

aSBP for the case of reduced contractility were close to their real values (-0.21 % error in aSBP

prediction and 3.30 % in CO prediction). Nevertheless, it is possible that there are extreme

cases for which our algorithm may fall short in making an accurate prediction. Therefore,

further investigation on the method’s performance in such cases should be performed in order

to evaluate the potential errors in a larger scale.

Finally, this method has been designed and applied on a healthy population. Hence, its

applicability might be limited in the case of pathological conditions, such as aneurysm or

aortic valve disease, where the relationship between input and output values is significantly

modified and often poorly specified. Investigation of the method’s performance on such

populations could also be of particular interest.

64



2.4. Discussion

Conclusion

In conclusion, it was demonstrated that a generic 1-D model of the systemic circulation can be

effectively adjusted to partially patient-specific standards using non-invasive measurements of

brachial pressure and PWV. The in vivo evaluation suggests that this novel method predicts CO

and aSBP with good accuracy and specificity. Further clinical validation against gold-standard

measurements remains to be performed in order to verify that the proposed technique may

be employed for non-invasive CO and aSBP monitoring in the clinical setting.
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Abstract

Monitoring biomarkers of vascular and cardiac function is crucial for cardiovascular disease

identification, treatment, and assessment of therapeutic response. Stroke volume (SV) is

a major biomarker of cardiac function, reflecting ventricular-vascular coupling. Despite

this, hemodynamic monitoring and management seldomly includes assessments of SV and

remains predominantly guided by brachial cuff blood pressure (BP). Recently, we proposed a

mathematical inverse-problem solving method for acquiring non-invasive estimates of mean

aortic flow and SV using age, weight, height, and measurements of brachial BP and carotid-

femoral pulse wave velocity (cfPWV). This approach relies on the adjustment of a validated

one-dimensional model of the systemic circulation and applies an optimization process for

deriving a quasi-personalized profile of an individual’s arterial hemodynamics. Following the

promising results of our initial validation, our first aim was to validate our method against

measurements of SV derived from magnetic resonance imaging (MRI) in healthy individuals

covering a wide range of ages (n=144; age range 18 to 85 years). Our second aim was to

investigate whether the performance of the inverse problem-solving method for estimating
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SV is superior to traditional statistical approaches using multilinear regression models. Our

findings demonstrate that the inverse method yielded higher agreement between estimated

and reference data (r = 0.83, P-value < 0.001) in comparison to the agreement achieved using

a traditional regression model (r = 0.74, P-value < 0.001) across a wide range of age decades.

Contrary to multilinear regression approaches which depend on the collected data for building

the regression equations, the inverse method is not specific to a particular dataset, but relies

on the information provided by patient-specific measurements. This latter aspect enhances

the applicability and generalization ability of the inverse method in the clinical setting and

highlights the importance of physics-based mathematical modelling in improving predictive

tools for hemodynamic monitoring.
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3.1. Introduction

3.1 Introduction

Over the last decades, hemodynamic monitoring has risen to the forefront of efficient and

sustainable healthcare. Monitoring of biomarkers for vascular and cardiac function is a crucial

factor in cardiovascular disease identification, treatment, and assessment of therapeutic

response [1]. Stroke volume (SV) is a major biomarker of cardiovascular function, reflecting the

interdependent performance of the heart and major blood vessels. Despite this, hemodynamic

management of patients via SV remains limited and guided predominantly by simple brachial

cuff blood pressure (BP) observations alone [2]. Such approaches compromise the utility and

effectiveness of hemodynamically-guided interventions [3; 4].

Clinically, the most reliable and accurate technique for cardiac output (CO) estimation is

thermodilution, with SV derived by dividing CO by heart rate (HR). Although thermodilution is

clinically feasible, it is highly invasive and associated with increased risk, and therefore is not

suitable for routine investigation. To overcome these limitations, several less invasive methods

for assessing CO and SV have been developed. Such methods include either minimally

invasive techniques such as pulse contour analysis or oesophageal doppler, which are still

relatively invasive and thus are excluded from the routine clinical examination, or non-invasive

techniques such as inert gas rebreathing, doppler ultrasound or magnetic resonance imaging

(MRI). The latter, while completely non-invasive and reasonably accurate, is expensive and

requires costly equipment and expert technical staff [5]. Moreover, none of these methods are

practical for routine, continuous bedside monitoring of SV.

Recently, we proposed a mathematical inverse-problem solving method for acquiring non-

invasive estimates of mean aortic flow using age, weight, height, and measurements of brachial

BP and cfPWV [6]. CfPWV can be routinely measured in clinical practice, has a satisfactory

repeatability, and has been identified as an independent predictor of clinical outcomes [101],

making it a valuable adjunct to BP measurements in routine assessments of risk. Therefore, the

required (input) measurements for our proposed method are simple and readily available from

the clinic. Moreover, our approach relies on the adjustment of a validated one-dimensional

(1-D) model of the systemic circulation [7] and applies an optimization process for deriving a

quasi-personalized profile of an individual’s arterial hemodynamics. As such, we believe it

provides a more sophisticated method for SV estimation compared with traditional statistical

modelling approaches. An initial clinical validation of the method was conducted in 20

healthy individuals against aortic flow data measured using ultrasound [8], with the results

indicating that the estimates of mean aortic flow were in good agreement with the reference

ultrasound-derived flow values.

Following the promising results of our initial validation, we wished to validate our method

using a more precise MRI-derived measure of SV in a larger group of individuals covering

a wide age range. A second aim was to investigate whether the performance of our inverse
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problem-solving method is superior to traditional statistical approaches using multilinear

regression models.

3.2 Methods & materials

Study population

The dataset used for the current study was obtained from a previous investigation of MRI-

derived regional aortic stiffness and diameter, as part of the Anglo-Cardiff Collaborative Trial

(ACCT) [9]. Subjects were recruited from the Cambridge arm of ACCT and were free of clinical

cardiovascular disease and medication. Approval was obtained from the local research ethics

committee, and written informed consent was obtained from all participants.

Protocol

All participants fasted for 4 h before any measurements were undertaken. Brachial cuff blood

pressure and cfPWV were measured after 10 min of supine rest. After a further 20 min of rest,

participants entered the MRI scanner. Cine phase contrast magnetic resonance imaging (PC-

MRI) sequences were then performed perpendicular to the aorta at the level of the ascending

aorta, located 1 cm distal to the aortic valve.

Aortic flow measurements

Images were acquired using a 1.5-T MRI system (Signa HDx, GE Healthcare, Waukesha, Wis-

consin). An 8-channel abdominal/pelvic coil was placed over the subject lying supine and a

cuff placed around the left arm for brachial BP measurement. Three plane localizer images

were obtained to identify the ascending and descending aorta through to the bifurcation.

A multi-slice, electrocardiographically triggered, black blood fast spin echo sequence was

acquired in an oblique sagittal orientation to demonstrate the full length of the aorta. An

electrocardiographically gated, segmented k-space, cine phase contrast sequence (PC-MRI)

was used with the following parameters: 30° flip angle, 5-mm slice thickness, 280x280-mm

field of view, 6.7 repetition time, 256x256 matrix, 2 excitations, and 150 cm/s through-plane

velocity encoding, with 1 view per segment. The duration of each sequence was approximately

5 min, with a total acquisition time of approximately 30 min. One hundred temporal phases

were retrospectively reconstructed with a true temporal resolution of 2.0 ± 6.7 ms due to the

interleaved positive and negative velocity encoding.

PC-MRI images allowed for deriving the aortic flow waveforms. Data analysis was performed

offline using CV Flow software (Medis, Leiden, the Netherlands). Aortic contours were auto-

matically detected in each slice location to obtain aortic flow-time curves and aortic areas
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through the cardiac cycle. In addition, up-sampling to 1 kHz was performed by interpolation

with custom software (version 2.6, Python Software Foundation, Wolfeboro Falls, New Hamp-

shire). In turn, the aortic flow waves permitted the accurate computation of the SV values.

The MRI-derived SV values (SVMRI ) were used as the reference data, against which the model-

derived SV estimations (SVi nver se ) were compared. It should be noted that PC-MRI constitutes

a very well validated technique and, most importantly, is considered as the non-invasive gold

standard for SV derivation [10].

Arm cuff pressure and pulse wave velocity

Brachial SBP (brSBPosci l l ometr i c ) and DBP (brDBPosci l l ometr i c ) were measured in duplicate

in the nondominant arm, according to the British Hypertension Society Guidelines using

a validated oscillometric device (HEM-711A-E, Omron Corp., Matsusaka, Japan). CfPWV

(cfPWVSphy g moCor ) was measured using the SphygmoCor (AtCor Medical) device by sequen-

tially recording electrocardiographic-gated carotid and femoral artery waveforms as previously

described [11].

Inverse problem-solving method

1-D arterial tree model

In this study, we adopted a validated 1-D model of the systemic arterial tree that has been

previously described by Reymond et al. [7]. The arterial tree includes the main arteries of

the systemic circulation, including a network representation of the coronary circulation. In

brief, the governing equations of the model are obtained by integration of the longitudinal

momentum and continuity of the Navier-Stokes equations over the arterial cross section.

Flow and pressure waves throughout the vasculature are obtained by solving the governing

equations with proper boundary conditions using an implicit finite-difference scheme. The

arterial segments of the model are considered as long tapered tubes, and their compliance is

defined by a nonlinear function of pressure and location as proposed by Langewouters [12].

The arterial wall behaviour is considered to be nonlinear and viscoelastic according to [13].

Local arterial compliance (C) is calculated after approximating pulse wave velocity (PWV) as an

inverse power function of arterial lumen diameter, following the physiological values reported

in the literature. Resistance of the peripheral vasculature (R) and terminal compliances (C) are

accounted for by coupling the distant vessels with three-element Windkessel models. At the

proximal end, the arterial tree either receives a prescribed input aortic flow waveform or is

coupled with a time-varying elastance model for the contractility of the left ventricle [14; 15].

In this study, we used a generic waveform with fixed shape as input to the arterial tree model.

The aortic flow wave is characterized by three parameters, namely the heart cycle period

(Tper i od ), the systolic duration (Ts y stole ), and the aortic flow peak (Qmax ). In order to decrease
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the computational cost of our method, we removed the brain circulation of the original 1-D

model. Three-element Windkessel models were used as terminal boundary conditions at

the left and right common carotid and vertebral arteries. Pressure and flow from the original

configuration were used to derive the parameters of the three-element Windkessel models via

fitting. The purpose of removing the cerebral circulation was to decrease the computational

time of the simulation. The model has been thoroughly validated [7; 16] and is able to predict

pressure and flow waves in good agreement with in vivo measurements. These waves can be

used for pulse wave analysis techniques to derive several parameters of interest.

Simulated pulse wave velocity

CfPWV was derived using the foot-to-foot tangent method [43]. The method uses the in-

tersection point of two tangents on the arterial pressure wave as a characteristic marker.

The first tangent is defined as the line that passes tangentially through the initial systolic

upstroke, i.e. the maximum of the first derivative. The second tangent line is the horizon-

tal line passing through the minimum pressure point. By applying the method, the pulse

transit time (PTTsi mul ated ) between the carotid artery and the femoral artery was estimated.

Total arterial length was determined by summation of the lengths of the arterial segments

within the transmission path, i.e. the relevant carotid-femoral path. Finally, simulated cfPWV

(cfPWVsi mul ated ) was calculated by dividing the total length by the PTTsi mul ated .

Optimization of the 1-D model

In the current study, we have applied an optimization algorithm in order to partially adjust

the generic 1-D arterial tree model to the specific participant under consideration (Figure 3.1).

The rationale behind this approach was that adjusting some of the model parameters may be

sufficient to approximate the measured data, namely brSBPosci l l ometr i c , brDBPosci l l ometr i c ,

cfPWVSphy g moCor [17].

The arterial tree model of this study is fully characterized by its geometry, the distensibility of

all arterial segments and the peripheral impedances (described by terminal compliances and

resistances). Additionally, aortic flow is needed as a proximal boundary condition. Identifi-

ability analysis [18] demonstrated that, for any individual with a given set of peripheral SBP,

DBP, cfPWV, HR, and SV values, there will be only one solution for the arterial tree model [6].

Therefore, if the generic arterial tree model modifies its parameters in order to approximate

the measured brSBP, brDBP and cfPWV, the model will approximate the hemodynamic profile

of the participant under consideration and will yield a partially personalized model. This

personalized model will allow for the derivation of SV.
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Inverse method for derivation of SV

In applying our optimization algorithm, for an individual, the following information is re-

quired: gender, age, height, weight, brSBP, brDBP, HR, and cfPWV. In the first step, the method

uses the demographic data (i.e. gender, age, height, weight) for adjusting the geometry of the

arterial tree model. Arterial length is adjusted in accordance to height. The reference state of

the arterial tree model corresponds to an individual with a height equal to 180 cm. Uniform

adjustment of the arterial lengths is done via multiplication with a common scaling factor.

Arterial diameter is uniformly adjusted based on previously published data that associate

aortic diameter with age, gender, and BSA [19]. This completes the anatomical adjustment of

the arterial tree model.

The inverse method additionally accounts for the non-uniform aortic stiffening which occurs

with aging [20]. For older individuals, stiffening is considered as non-uniform and more

pronounced in the proximal aorta. This gradient in distensibility is adjusted by changing the

relative regional distensibility of the proximal aorta through multiplication with an age-related

proximal factor based on published literature [21].

Subsequently, the Tper i od is computed from the HR, whereas previously published data on

the HR-related changes in systolic duration (Ts y stole ) [22] are used to adapt the Ts y stole with

respect to the measured HR. As a result, the only remaining flow-related parameter to be

optimized for the aortic flow input is Qmax .

Following these model adaptations, the optimization algorithm is employed for adjusting

the Qmax , C, R. An arbitrary parameter set of C, R, Qmax is used in the first optimization

iteration of the algorithm. Under all conditions, the 1-D model computes the simulated flows

and pressure waves throughout the arterial tree, including the variables that correspond to

the measured data (brSBPosci l l ometr i c , brDBPosci l l ometr i c , cfPWVSphy g moCor ) as well as the

the quantity of interest, namely the SV. The standard (non-optimised) model is expected to

estimate inaccurate flows and pressures (and thus brSBPsi mul ated and brDBPsi mul ated ) due

to the inaccurate input model parameters and the inaccurate input aortic flow for the specific

individual under investigation. Similarly, the cfPWVsi mul ated is not the same as the measured

cfPWVSphy g moCor . To address this issue, the non-invasive, participant-specific measurements

are integrated into the model using a gradient descent optimization algorithm. The reference

C, R, and Qmax of the generic arterial tree are adjusted by multiplication with different scaling

factors until the model-simulated brSBPsi mul ated , brDBPsi mul ated and cfPWVsi mul ated are

identical with the measured brSBPosci l l ometr i c , brDBPosci l l ometr i c , and cfPWVSphy g moCor .

Once convergence is achieved, the simulated SV is considered as the final estimation for the

specific participant. A more analytical description of the “tuning” process can be found in the

original publication [6]. The methodology described above was repeated for the entire study

population (n = 144). The estimated SVi nver se were compared to the SVMRI . Accuracy was

also assessed independently for the different age groups, i.e. 20-29, 30-39, 40-49, 50-59, 60-69,
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and g eq 70 years.

Finally, we evaluated the errors resulting from the use of an approximated aortic flow wave-

form. We compared the Ts y stole , Qmax , as well as the time of Qmax (tQmax ) derived from the

approximated flow waveform to the actual values extracted from the reference MRI aortic

flow waveform. Consequently, we performed one-way ANOVA for the three estimated charac-

teristics across the different age groups to investigate whether an age-dependent effect was

observed.

Figure 3.1 – Schematic representation of the optimization process for predicting non-invasive
stroke volume. Adapted from [6]

Multilinear regression analysis

In addition to the modelling analyses described above, we tested the performance of mul-

tilinear regression analysis using SVMRI as the dependent variable. Overall, this approach

allowed us to compare our inverse method with the more traditional multilinear regression

method for estimating SV. For the multilinear regression method, the same parameters used as

inputs to the inverse method were used as independent variables, namely age, gender, weight,

84



3.3. Results

height, HR, brSBP, brDBP and cfPWV. We followed two different approaches for testing the

performance of multilinear regression to: (i) a train/test split cross validation (CV) (1CV), and

(ii) a 10-fold CV (10CV). For the 1CV approach, 100 out of the 144 participants were kept for

defining the regression coefficients. Subsequently, the resulting regression equation was tested

on the remaining 44 participants. This resulted in one multinear regression model. The 10CV

approach required that the group of 144 participants was randomly split into 10 equal subsets.

One subset was allocated as the testing group to validate the regression equation, while the

other 9 subsets were used for defining the regression coefficients. This procedure was repeated

10 times so that all participants were used for testing. The performance metrics were derived

by the average performance of all 10 models. The reason for adopting two CV approaches

was to facilitate a more complete comparison between the two methods of estimating SV,

i.e. inverse method and multilinear regression. We performed ordinary least squares (OLS)

estimation of the regression coefficients using the statsmodels library [23] for only 1CV setting.

Hypothesis testing for each regression coefficient was realized using the t-stastistic.

Statistical analysis

The statistical analysis was performed in Python (Python Software Foundation, Python Lan-

guage Reference, version 3.6.8, Available at http://www.python.org). All values are presented

as means±SD. The agreement, bias and precision between the model estimations (estimated

data) and the reference data obtained from the MRI images were evaluated using the Pearson’s

correlation coefficient (r ), the mean absolute error (MAE), the normalized root mean square

error (nRMSE) and Bland-Altman analyses [24]. The computed nRMSE was based on the

difference between the minimum and maximum values of the dependent variable (y) and

was computed as RMSE/(ymax – ymi n). Linear least-squares regression was performed for the

estimated and reference data. The slope and the intercept of the regression line were reported.

Two-sided P-value for hypothesis tests was calculated using Wald Tests with t-distribution of

the test statistic. The null hypothesis was that the slope is zero. One-way analysis of variance

(ANOVA) for unbalanced data (each group had different sample sizes) was performed on the

estimations for the six age groups. A P-value below 0.05 was considered statistically significant.

3.3 Results

Table 3.1 shows the subject characteristics of the study population (n = 144), including the

SVMRI reference data. The comparisons between the model-derived estimations for SV us-

ing (i) the inverse method (SVi nver se ) and (ii) multilinear regression (SVr eg r essi on), and the

reference SVMRI data are presented below for each of the targeted outputs.
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Table 3.1 – Subject characteristics and hemodynamic parameters according to the age group.
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3.3. Results

Estimation of SV using the inverse method

The comparison between SVi nver se and SVMRI is presented in 3.2. The slope and the intercept

of the regression line were 1.1 (P-value < 0.001) and -8.8 mL, respectively. The nRMSE was

found to be equal to 13.8 %. Bland-Altman analysis yielded a low bias of 1.5 mL and LoA

equal to (-29.7, 32.7) mL. The estimation error was out of the LoA only for the 7 % of the study

population. Variability of the mean difference between estimated and measured SV values was

15.9 mL. Although several overestimations were observed for high values of SV, the majority

of the estimated data were tightly distributed around the line of equality (x = y). The mean

absolute error (MAE) in SV estimation was computed for the different age groups of the study

population (Figure 3.3). The overall variability of the MAE was ±2.2 mL (P-value < 0.0001),

while higher MAE values (> 12 mL) were reported for participants aged between 30-49 years.

Estimations of SV had the lowest errors for participants aged between 60-69 years. Overall,

the MAE values differed significantly between age groups of the study population (P-value <

0.001).
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Figure 3.2 – Comparison between the estimated SV values and the reference in vivo data.
Scatterplot and Bland–Altman plot between the estimated SV (using the inverse method) and
the reference SV (using the PC-MRI method). The solid line of the scatterplots represents
equality. In Bland–Altman plots, limits of agreement (LoA) are defined by the two horizontal
dashed lines.
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Figure 3.3 – Variation of the mean absolute error in the stroke volume estimation across the
age groups.

Approximated aortic flow characteristics

Table 3.2 reports the measured (MRI) and estimated aortic flow characteristics for all par-

ticipants and the different age groups. The estimated Ts y stole was slightly lower than the

measured values for all age groups. The correlation between the estimated and measured data

was r = 0.6 and the mean absolute percentage error was 10 %. The estimation of Qmax was

satisfactory with r = 0.7, and a small overestimation of the measured values. Finally, assuming

a fixed aortic flow wave shape led to a less precise approximation of tQmax with a correlation

coefficient of r = 0.41.

Estimation of SV using multilinear regression analysis

Hypothesis testing indicated that all of the specified coefficients, except for those correspond-

ing to gender (P-value = 0.52) and brDBP (P-value = 0.28), were significantly different from

zero. Therefore, the multilinear regression analysis was repeated, excluding gender and brDBP

from the model.

The regression equation for the 1CV scheme was as follows:

SV =−0.34×(ag e)+0.38×(wei g ht )+40.14×(hei g ht )+0.47×(br SBP )−0.45×(HR)−4.23×(c f PW V ).

(3.1)
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Table 3.2 – Real and estimated aortic flow characteristics according to age group.
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For the 10CV scheme, the comparison between the regression-estimated SV (SVr eg r essi on) and

the reference SVMRI is presented in Figure 3.4. The slope and intercept of the regression line

were 0.57 (P-value < 0.0001) and 36.32 mL, respectively. The LoA were equal to ±27 mL and

the bias was zero. Results of the new hypothesis testing for the OLS regression coefficients

reported a P-value below 0.01 for all independent variables. Correlation and agreement

between SVr eg r essi on values (using both testing schemes) and the reference SVMRI values are

presented in 3.3. Multilinear regression models yielded a lower correlation (r = 0.74) compared

with the inverse method (r = 0.83), whereas the LoA were narrower in the case of multilinear

regression analysis.
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Figure 3.4 – Comparison between the estimated SV values and the reference in vivo data.
Scatterplot and Bland–Altman plot between the predicted SV (using the multilinear regression
method) and the reference SV (using the PC-MRI method). The solid line of the scatterplots
represents equality. In Bland–Altman plots, limits of agreement (LoA) are defined by the two
horizontal dashed lines.

3.4 Discussion

In the present study, we validated a previously developed inverse problem-solving method for

the estimation of a major hemodynamic parameter, the SV. The original method, based on
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Table 3.3 – Overall comparison between the SV estimates and the reference MRI SV.

mean±SD [mL] r MAE [mL] Bias (LoA) [mL]
Measured (n=144) 84.4±20.4 - - -
Measured (n=44) * 82.6±19 - - -
Inverse (n=144) 86±27.8 0.83 10.4 1.5 (-29.7, 32.7)
Inverse (n=44) * 84.5±26.1 0.85 10.1 1.9 (-25.4, 29.2)
MLR10CV (n=144) 84.5±15.8 0.74 11 0.02 (-27, 27.1)
MLR1CV (n=44) * 84.6±14.5 0.79 10.8 2 (-20.7, 24.8)
1CV corresponds to train/test split equal to 100/44.

10CV corresponds to 10-fold CV.

*Values correspond only to the test set (44 subjects).

non-invasive measurements of brachial BP and cfPWV [6] underwent a preliminary validation

in a small (n = 20) cohort of human subjects. Here, we have implemented and tested our

method on a further 144 healthy individuals and compared the SVi nver se (estimated data

derived from the inverse method) to SVMRI (measured data derived from the non-invasive

gold standard of MRI). Additionally, we have compared the performance of the inverse method

against the predictive capacity of a traditional linear regression approach which uses the same

set of inputs as those used in the inverse method. The two key findings of this study are that

the inverse problem-solving method yields accurate estimates of SV across a wide range of

ages and SV values, in a simple and cost-efficient manner in comparison to PC-MRI; and that

a traditional statistical approach such as multilinear regression analysis is inferior to the more

sophisticated inverse problem-solving technique, for a given set of clinical data.

The SV, together with BP, are fundamental and independent indicators of cardiovascular

function and are essential for the understanding of cardiovascular physiology and pathology

[25]. However, in clinical practice, BP and BP-derived surrogates of SV are often used either

interchangeably with, or as replacements for, direct measurements of flow. This simplification

potentially compromises our understanding of cardiovascular physiology and limits the clini-

cal utility of hemodynamic analyses [3; 26]. While notable research efforts have been made for

estimating SV using BP recordings [27; 28; 29; 30], none of these techniques accounts for the

specific arterial tree properties unique to each individual.

Current doppler ultrasound technologies in the clinical setting include echocardiography,

transoesophageal doppler, and transcutaneous doppler. However, these techniques are as-

sociated with several limitations concerning applicability, cost and accuracy. For instance,

transoesophageal doppler is largely limited to perioperative monitoring as the ultrasound

transducer is inserted into the oesophagus and requires sedation. On the other hand, MRI

allows for improved spatial resolution, larger imaging windows, and higher tissue contrast
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than ultrasound-based techniques. Specifically, PC-MRI allows for accurate determination of

the presence, magnitude, and direction of flow, as well as for the estimation of flow velocity,

volume flow rate, and displaced volumes. In spite of these advantages, MRI remains inconve-

nient and expensive for routine examinations and requires long imaging times. As a result,

monitoring SV effectively in a reliable, simple and cost-efficient way remains an unmet need.

Mathematical modelling of the human cardiovascular system offers valuable tools to investi-

gate patient-specific aspects of arterial hemodynamics, which are difficult to assess in clinical

practice. Data assimilation aims to address relevant challenges and can significantly promote

patient-specific modelling [31]. Rather than relying on simplified equations, we have followed

a data assimilation approach, which is based on the adjustment of a generic 1-D arterial

model using the non-invasive data of the peripheral cuff-based SBP, DBP and cfPWV, which are

easily obtained in a clinical setting. Successful tuning permits the creation of a personalized

cardiovascular model which, consequently, provides access to key hemodynamic information

including SV. The tuning is conducted via an optimization process which allows for the fusion

between the computational model and the measured data. This study, along with the initial

validation [6], demonstrated that creating a partially personalized model can improve the

prediction of SV.

Acquisition of cfPWV requires sequential recording of the carotid and femoral pressure pulse

via applanation tonometry [32]. CfPWV has a satisfactory reproducibility, while being an

independent index of cardiovascular risk and/or mortality [33]. In our study, the role of cfPWV,

as an index of arterial stiffness, was to facilitate the adjustment of the generic arterial tree

model. Given that arterial distensibility, the inverse of arterial stiffness, constitutes a major

parameter of the vasculature, combining the information provided by arterial stiffness and BP

allowed us to determine aortic hemodynamics and thus SV.

The data from the Anglo-Cardiff Collaborative Trial allowed us to have an approximately

equally split dataset for seven age groups, i.e. 20-29, 30-39, 40-49, 50-59, 60-69, and ≥ 70

years, which enabled an accurate comparison of the age-based results. Predictions of SV were

precise across the different age groups, with a low variability of the MAE (±2.2 mL). Lower

errors were reported for the 6th decade of life. It was observed that the highest absolute errors

corresponded to high values of SV, while predictions were more accurate for SV values below

130 mL. Overall, there was good agreement and high precision between the SVi nver se and the

SVMRI data across different age decades and SV values, which indicates a robust performance

of the inverse method.

We also investigated the validity of the assumption of a fixed aortic flow shape by comparing

the estimated values of Tper i od , Ts y stole , Qmax , and tQmax with their actual values. The

inverse method relies on a previously published formula [22] which provides a HR-related

approximation of Ts y stole . Overall, it was observed that the estimated Ts y stole values did not

vary significantly between age groups, while the variability within the same age group was also
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rather small. Our results also indicated that the formula slightly underestimated the Ts y stole

values. It is likely that this underestimation led to the overestimation of Qmax . Given that

the method yielded accurate estimates of SV, for achieving the same SV, an underestimated

Ts y stole would naturally lead to an overestimated Qmax . Finally, assuming a fixed shape for

aortic flow wave resulted in deviations in the value of tQmax (mean absolute percentage error

was equal to 47 %). Despite the reported deviations in the timing features of the aortic flow

wave, the estimated Qmax was in satisfactory agreement with the reference Qmax . Given that

our method aims to minimize the required inputs for estimating SV, the use of a fixed shape

wave is a well-advised approximation. Nonetheless, future work will aim to personalize the

aortic flow wave shape with respect to subject characteristics, such as age and gender.

Multilinear regression analysis was performed using two cross-validation approaches, namely

1CV and 10CV. Hypothesis testing was conducted, where the P-value for each independent

variable tested the null hypothesis that the variable has no correlation with the dependent

variable. Coefficients of gender and brDBP were not statistically significantly different to zero,

indicating that there was insufficient evidence in our sample to conclude that a non-zero

correlation exists. All other regression coefficients were reported to be statistically significantly

different from zero.

We compared the inverse method with the conventional multilinear regression analysis. Com-

parison indicated a higher correlation for the former. The LoA were broader for the inverse

method, which also reported a higher bias. This outcome was expected, if we consider that

the regression equation was constructed using a subset of the study population. The MAE

was lower for the inverse method. A notable advantage of the inverse method relies on its

generalization ability. Statistical learning models (such as linear regression) are often prone

to generalization issues. These models are dependent on the specific training data used for

developing the regression equation, and while they are able to provide accurate estimates for

a hold-out (not considered in the process of developing the regression model) test subset of

the same dataset, they are not likely to perform adequately for other independent datasets

[34]. This lack of accuracy might be attributed to differences in the measurement protocol (e.g.

physician preferences, local care standards), medication selection or other clinical decisions

which influence the model development [34]. Specifically, regression analysis requires prior

knowledge of large sets of collected data in order to estimate the coefficients of the regression

equation. On the other hand, the inverse method is able to offer improved performance

without dependency on pre-defined, dataset-derived regression coefficients.

Limitations

The limitations of the inverse method have been acknowledged in the original publication [6].

Another limitation pertains to the synchronization of the clinical measurements. In particular,

contrary to the simulated data produced by the 1-D arterial tree model, which corresponds to
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completely simultaneous pressure and flow waves, the in vivo measurements were performed

with a time difference. Nevertheless, the intervals between the measurements were rather

short and therefore, we may deduce that there was not a high variation in the measured data.

Finally, we used aortic flow data derived from PC-MRI as a reference method with which to

compare our estimated SV values. Although PC-MRI is considered a well-validated method

for aortic flow measurements, the gold standard technique is thermodilution. Next validation

steps will include testing our method against thermodilution-derived SV data.

Conclusion

We have demonstrated that SV can be estimated accurately using a previously developed in-

verse problem-solving method. The method relies on the use of non-invasive, easily-obtained

clinical measurements of brachial cuff BP and cfPWV. Values of SV estimated using our inverse

method compared favorably with the reference SV data derived from PC-MRI. In addition,

agreement between predictions and reference values was higher with the inverse method than

traditional linear regression. These results, along with the inherent generalization limitations

of regression equations, highlight the importance of physics-based mathematical modelling

in improving predictive tools for hemodynamic monitoring.
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Abstract

Cardiac and aortic characteristics are crucial for cardiovascular disease detection. However,

non-invasive estimation of aortic hemodynamics and cardiac contractility is still challenging.

This paper investigated the potential of estimating aortic systolic pressure (aSBP), cardiac

output (CO), and end-systolic elastance (Ees) from cuff pressure and pulse wave velocity

(PWV) using regression analysis. The importance of incorporating ejection fraction (EF) as

additional input for estimating Ees was also assessed. The models, including Random Forest,

Support Vector Regressor, Ridge, Gradient Boosting, were trained/validated using synthetic

data (n = 4,018) from an in silico model. When cuff pressure and PWV were used as inputs,

the normalized-RMSEs/correlations for aSBP, CO, and Ees (best-performing models) were

3.36±0.74 %/0.99, 7.60±0.68 %/0.96, and 16.96±0.64 %/0.37, respectively. Using EF as ad-

ditional input for estimating Ees significantly improved the predictions (7.00±0.78%/0.92).

Results showed that the use of non-invasive pressure measurements allows estimating aSBP

and CO with acceptable accuracy. In contrast, Ees cannot be predicted from pressure signals

99



Chapter 4. Non-invasive estimation of aortic hemodynamics and cardiac contractility
using machine learning

alone. The addition of the EF information greatly improves the estimated Ees . The accuracy of

the model-derived aSBP compared to in vivo measured aSBP (n = 783) was very satisfactory

(5.26±2.30%/0.97). Future in vivo evaluation of CO and Ees estimations remains to be con-

ducted. This novel methodology has the potential to improve the non-invasive monitoring of

aortic hemodynamics and cardiac contractility.
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4.1. Introduction

4.1 Introduction

Clinical parameters directly measured in the heart or at the root of the aorta are crucial

for detection, diagnosis, prognosis, treatment, and management of cardiovascular diseases

[1; 2; 3; 4]. Aortic hemodynamics, such as aortic systolic blood pressure (aSBP) and cardiac

output (CO), are direct and more informative parameters for assessing cardiovascular health

than corresponding measurements obtained at the peripheral arteries [1; 5; 6]. However,

the gold standard techniques for measuring aSBP and CO are catheter-based and expensive

[7; 8]. Furthermore, there is a need for non-invasive estimation of cardiac contractility. End-

systolic elastance (Ees), i.e. the slope of the end-systolic pressure–volume relation (ESPVR), is

a pivotal determinant of left ventricular (LV) systolic performance and a powerful index of the

arterio-ventricular interaction [4; 9; 10]. Despite its clinical importance, the clinical use of this

measure is limited by the need for invasive acquisition of multiple LV pressure–volume loops

under varying loading conditions [11].

Peripheral blood pressure (BP) measurements acquired by cuff sphygmomanometry have a

fundamental role in the everyday clinical setting [12]. Recognizing the important differences

between peripheral and central aortic pressures, significant efforts were oriented towards

the non-invasive estimation of aortic hemodynamics, in particular aSBP, based on peripheral

pressure measurements [13]. Among commonly used approaches for obtaining aSBP are

generalized transfer functions (GTFs) [14; 15; 16], moving average models [17; 18] and pulse

wave analysis-based methods [8; 19; 20]. Nevertheless, the totality of them relies on the

acquisition of the entire peripheral pressure waveform which can be tedious and susceptible

to errors [21].

Prediction of CO constitutes a more challenging task due to its dependency on the patient-

specific arterial dimensions [22]. Non-invasive CO monitoring has been addressed using

single-beat pulse contour analysis [23; 24; 25] which, however, allows for the derivation of only

an uncalibrated estimation instead of the absolute CO value. Finally, notable studies have been

developed and validated against invasive techniques for estimating Ees for a single cardiac

cycle [26; 27]. The first fully non-invasive method was introduced by Chen et al. [26]. They

proposed a simple equation to derive Ees from pressure arm cuff, echo-Doppler cardiography,

and electrocardiograms.

Despite the good precision of previous techniques, there has been no holistic and complete

study to investigate the possibility of estimating aortic hemodynamics and cardiac contractility

using readily available non-invasive measurements on the same population. This is mainly

attributed to two inherent limitations, i.e. the lack of invasive data in a large scale and the

ethical limitation to perform invasive measurements on a healthy population, if no diagnostic

reason has been provided.

Cardiovascular models hold a valuable position for addressing the challenge of limited access
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on in vivo data [28]. They constitute a faithful representation of the real cardiovasculature and

allow the study of pathophysiological mechanisms and diseases [29; 30]. Furthermore, they

can provide a complete set of parameters to describe the system, while the simulated signals

are noise-free.

The present study aimed to evaluate whether aortic hemodynamics (i.e. aSBP and CO) and

cardiac contractility (i.e. Ees) can be accurately predicted by the use of brachial systolic blood

pressure (brSBP) and diastolic blood pressure (brDBP), heart rate (HR), carotid-femoral pulse

wave velocity (cfPWV), and, if necessary, ejection fraction (EF). These quantities were chosen

as they are readily available in clinical practice and have been shown to provide information

on the cardiovascular state [2; 3; 4; 31]. To overcome the aforementioned limitations, we

performed our experiments using synthetic data (n = 4,018), which were generated using a

previously validated one-dimensional (1-D) mathematical model of the cardiovascular system

[32]. Regression analysis was performed to establish the relationship between the non-invasive

measurements [brSBP, brDBP, HR, cfPWV, (and EF)] and the invasive quantities of interest

(aSBP, CO, and Ees). The regression pipeline of the present study is presented in Figure 4.1. A

ten-fold cross validation (CV) scheme was employed for the training/testing of the proposed

approach. We evaluated four models including Random Forest [33], Support Vector Regressor

(SVR) [34], Ridge [35], and Gradient Boosting [36]. In addition, averaging of the multiple

predictions was performed. Two approaches were investigated: (i) prediction of aSBP, CO,

and Ees using brSBP, brDBP, HR, and cfPWV as inputs, and (ii) prediction of Ees using brSBP,

brDBP, HR, cfPWV, and EF. The accuracy of our prediction was evaluated by comparing the

model-derived values with the reference simulated data. The accuracy of the aSBP model

was subsequently validated using a large clinical dataset including in vivo hemodynamic

measurements (n = 783). Lack of CO and Ees in vivo data impeded the clinical evaluation of

the corresponding models.

4.2 Methods & materials

A regression pipeline was applied for estimating aortic hemodynamics and LV contractility

index. The schematic representation of the methodology is presented in Figure 4.1. The input

data comprised brSBP, brDBP, HR, cfPWV, and EF for every subject. These data were fed to

the regression models to estimate aSBP, CO, and Ees . First, brSBP, brDBP, HR, and cfPWV were

used as input predictors for all three outputs, i.e. aSBP, CO, and Ees . A second regression

analysis was performed using EF as an additional input feature only for the estimation of Ees .

The outputs of each testing set were blinded and kept as the ground truth against which our

predictions were later compared.
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Figure 4.1 – Schematic illustration of the regression pipeline. Brachial systolic blood pressure
(brSBP), brachial diastolic blood pressure (brDBP), heart rate (HR), carotid-femoral pulse wave
velocity (cfPWV), and ejection fraction (EF) were used as features for predicting aortic systolic
blood pressure (aSBP), cardiac output (CO), and end-systolic elastance (Ees). Regression
models were trained to map the input data to the respective target data of interest. The
methodology presented here was followed for each regression process (in terms of set of
inputs, model, and output). Adapted from [37].

Brief description of the in silico model of cardiovascular dynamics

In the present study, we used a 1-D in silico model of the cardiovascular system, that has been

previously described and validated against in vivo data [32]. The arterial tree includes the

main arteries of the systemic circulation, as well as the cerebral circulation and the coronary

circulation. In summary, the governing equations of the model are derived by integrating the

longitudinal momentum and continuity equations over the arterial cross section. Pressure

and flow are acquired across the arterial tree by solving the governing equations employing

an implicit finite-difference scheme. Local arterial compliance is calculated, provided that

pulse wave velocity (PWV) is approximated as an inverse power function of the arterial lumen

diameter. Three-element Windkessel models [38] are coupled to the distal vessels to account

for the peripheral resistance. The contractility of the left ventricle is modeled using a time-

varying elastance model [4; 9]. This elastance model considers a linear ESPVR characterized

by its slope, the Ees , and its intercept, the dead volume, Vd , as well as a linear end-diastolic

pressure–volume relation characterized by its slope, the end-diastolic elastance (Eed ).
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Synthetic population generation

A dataset of 4,018 synthetic hemodynamic cases was created. The 1-D cardiovascular model

ran using different combinations of arbitrary input parameters. The distributions of the input

parameters were based on physiologically relevant data from the literature. The cardiovascular

parameters were chosen to represent healthy individuals. Due to the limited amount of

probabilistic information, the sampling was selected to be random Gaussian. The values

of Ees and Eed ranged within [1.03, 3.5] mmHg/mL and [0.05, 0.2] mmHg/mL, respectively

[39; 40; 41]. HR varied between 60 and 100 bpm. The LV filling pressure lied between 7 and

23 mmHg according to [42]. The Vd and the time of maximal elastance (tmax ) were kept

unchanged. Their selected values were equal to the mean values of Vd = 15 mL and tmax =

340.00 ms as reported by previously published works [32; 43]. Arterial geometry was modified

to simulate different body types by adapting the length and the diameter of the arterial vessels.

The heights covered a range of [150, 200] cm while the limits for aortic diameter were set to [1.9,

4] cm [44; 45]. Total peripheral resistance varied within 0.5–2 mmHg.s/mL [46]. Total arterial

compliance was chosen within the range of [0.1, 3.8] mL/mmHg in order to account for a wide

range of different values of arterial tree stiffness [47; 48]. It should be noted that evidence of

nonuniform aortic stiffening was integrated for the elderly and hypertensive virtual subjects,

following the methodology described by Bikia et al.[49].

Virtual dataset

The parameters of interest were estimated from the 1-D model-derived pressure and flow

waves (simulation’s outputs). Synthetic brSBP, brDBP as well as HR data were obtained from

the pressure wave at the left brachial artery. Similarly, aSBP was derived from the pressure

waveform at the aortic root. CfPWV was derived using the tangential method [50]. The method

computed the intersection (foot) of two tangents, i.e. the line passing tangentially through

the systolic upstroke and the horizontal line passing through the point of minimum pressure.

Subsequently, the pulse transit time was estimated between the foot of the wave at the two

sites, namely, between the carotid artery and the femoral artery. The length between the

two arterial sites was calculated by summing the lengths of the arterial segments within the

transmission path. Finally, the cfPWV was estimated by dividing the arterial length of the path

by the pulse transit time. Given that the ESPVR was known, the EF was derived by dividing

the blood volume that is ejected within each heartbeat, i.e. the stroke volume (SV), by the

end-diastolic volume (EDV). The value of the Ees was defined as the slope of the ESPVR. Then,

all simulated information was discarded, except for the “measured” brSBP, brDBP, HR, cfPWV,

and EF (inputs) and the aSBP, CO, and Ees data (outputs). The total dataset (organized in pairs

of inputs and outputs) was kept for the training/testing process.
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Blending the dataset with random noise

The synthetic data were corrupted with random noise in order to represent a more realistic

data collection. The introduced noise was equivalent to a random relative error within the

range of [- 6, 6] % with respect to the actual value. This magnitude of error was selected based

on published data from previous studies [51].

Clinical dataset

For the clinical validation of the aSBP estimations, we used clinical data from 783 subjects who

underwent non-invasive cardiovascular assessment for research purposes, at the First Univer-

sity Department of Cardiology (Hippokration General Hospital, Athens, Greece). Anonymized

data were analyzed in compliance with the Declaration of Helsinki of the World Medical

Association and the National Regulations for clinical research.

The cfPWV was measured in every subject as previously described [52; 53; 52]. In brief, cfPWV

measurement was performed using the SphygmoCor apparatus (AtCor Medical Pty Ltd, West

Ryde, Australia). First, short-term continuous arterial pressure waveforms were recorded by

use of a hand-held tonometer (Millar, Houston, USA), simultaneously with ECG acquisition (for

the synchronization of the continuous pressure waves recorded at the carotid and the femoral

artery). Then, the recorded pressure waveforms were processed by proprietary software that

automatically computes pulse transit time from the carotid to the femoral artery using the

tangential method [50]. Finally, cfPWV was calculated by the ratio of the distance between

the two recording sites (calculated as the length from the suprasternal notch to femoral artery

minus the length from the carotid artery to the suprasternal notch) to the pulse transit time.

CfPWV measurements were performed with the subject at the supine position after 5 min

resting period.

Non-invasive estimation of the aortic pressure waveforms was performed by the SphygmoCor

System (AtCor Medical Pty Ltd), as previously described [54; 55]. Radial pressure waves were

first recorded by applanation tonometry and central pressure waves were derived by use of

validated transfer functions [56]. Multiple recordings were performed in every subject to

accomplish optimal quality control criteria (quality index: > 85%). Calibration of the recorded

pulse waves was performed using the brachial systolic and diastolic BPs, which were measured

by cuff sphygmomanometry. The accuracy of this apparatus has been previously evaluated by

comparing the estimated aortic BPs with intra-aortic catheter-based BP measurements [54].

Furthermore, the reproducibility of this technique has been also found to be acceptable under

several different conditions and populations [57].
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Table 4.1 – List of the hyperparameters which were chosen to be optimized and their corre-
sponding values.

Model Hyperparameters to be optimized Values

Random Forest
max_depth {5, 10, 20}

n_estimators {500, 700, 1000}

Support Vector Regressor
C {1, 10, 100}

gamma {0.001, 0.01, 0.1, 1}
Ridge alpha {1, 10, 100, 200}

Gradient Boosting
learning_rate {0.01, 0.05, 1}
n_estimators {100, 500, 1000, 1750}

Regression analysis

Four regression models were trained/tested to estimate the corresponding target outputs.

The models that were employed were Random Forest [33], SVR [34], Ridge [35], and Gradient

Boosting [36]. By definition, a regression model comprises the following components: (i)

the unknown hyperparameters, β, (ii) the independent variables, Xi , and (iii) the dependent

variable, Yi . In this analysis, the objective was to investigate whether the regression model can

estimate aSBP, CO, and Ees from single-beat input predictors [brSBP, brDBP, HR, cfPWV, (EF)].

The training/testing scheme was based on a ten-fold CV scheme [58] (Figure 4.2). Following a

ten-fold CV, all cases were divided into ten equal sets in a random manner. In each fold, one

set was left out being the testing group, and the rest of sets were used as the training group to

tune the parameters of the models. Hyperparameter tuning was performed internally in each

fold using GridSearch with a ten-fold CV in order to optimize the β parameters of each fold’s

model (Figure 4.2). The hyperparameters that were chosen to be optimized are reported in

the Table 4.1. The hyperparameters’ values that are not reported in Table 13 were set to their

default value.

We investigated two approaches: (i) one to predict aSBP, CO, and Ees using brSBP, brDBP, HR,

and cfPWV, and (ii) a second one to predict solely Ees using brSBP, brDBP, HR, cfPWV, and EF.

Consequently, we evaluated the accuracy of each regression model for every target variable on

a subject level. Additionally, averaging of the multiple predictions was tested as an ensemble

learning approach. The training/testing pipeline was implemented using the Scikit-learn

library [59] in a Python programming environment. The Pandas and Numpy packages were

also used [60; 61].

In silico validation of the model-derived predictions

We first assessed the performance of each regression model for every target variable on a

subject level for the virtual population. Ten-fold CV as described above was used to evaluate

the accuracy of the trained models. Moreover, we calculated the percentages of the cases
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Figure 4.2 – Experimental design for the evaluation of the regression models. The model
evaluation was done using ten-fold cross validation (CV) (external CV). In every external fold,
we performed hyperparameter tuning with ten-fold CV (internal CV). Adapted from [37].

whose aSBP errors met the international standards (< 5 ± 8 mmHg) of the European Society of

Hypertension International Protocol [62]. The error threshold for CO was set to 0.3 and 0.5

L/min based on the objective criteria suggested by Critchley and Critchley [63]. Finally, given

that the only clinically acceptable technique for measuring Ees is the invasive end-systolic

pressure–volume relationship, there are not meta-analyses using Ees data. In this respect, for

the Ees values within the range of [1, 4.5] mmHg/mL, thresholds of 0.05 and 0.20 mmHg/mL

should be adequate to provide an accurate estimation of Ees .

Sensitivity analysis for the training size

In order to assess the effect of the number of training samples on our models’ accuracy,

sensitivity analysis was performed. The regression analysis was repeated after decreasing the

training size from 95 to 15 % of the total number of cases. For each training size, the predictions

were evaluated in terms of RMSE between the estimated and reference data. Hyperparameter

tuning was implemented for each different training set under consideration.

In vivo validation of the model-derived aSBP predictions

Moreover, in vivo validation was performed only for the best performing aSBP estimator, i.e.

SVR. The validation was realized in two steps. First, we trained/tested an SVR model using

only in vivo data following the experimental design described in Figure 4.2. Consequently, an

SVR model was trained with the totality of the in silico data (n = 4,018) and, then, was tested on
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Figure 4.3 – Experimental design for the evaluation of the synthetically trained model against
the in vivo data. Adapted from [37].

the in vivo data (n = 783), as depicted in Figure 4.3. During training, hyperparameter tuning

was performed using GridSearch with ten-fold CV.

Feature importance evaluation

We assessed the importance of each input feature using the scores returned by the Random

forest model. The average importance of each feature was then calculated by averaging the

scores from every fold k (k = 1, 2, . . . 10).

Statistical analysis

The algorithms and the statistical analysis were implemented in Python (Python Software

Foundation, Python Language Reference, version 3.6.8, Available at http://www.python.org).

We performed OLS estimation of the regression coefficients using each of the target parameters,

i.e. aSBP, CO, and Ees , as dependent variable and brSBP, brDBP, cfPWV, HR, and EF (only for

Ees) as independent variables (using Statsmodels library [64]). Hypothesis testing for each

regression coefficient was realized using the t-stastistic. The agreement, bias and precision

between the method-derived predictions and the real values were evaluated by using the

Pearson’s correlation coefficient (r ), the coefficient of determination (R2), the root mean

square error (RMSE), and the normalized root mean square error (nRMSE). The computed

nRMSE was based on the difference between the minimum and maximum values of the

dependent variable. Bias and limits of agreement as described by [65] were reported. The level

of statistical significance was set at P-value < 0.05.
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Table 4.2 – Distributions of the parameters of the in silico population (n = 4,018).

Parameter Value (n = 4,018)
min max mean SD

End-systolic elastance [mmHg/mL] 1.03 3.50 2.29 0.40
End-diastolic elastance [mmHg/mL] 0.05 0.20 0.12 0.09
Filling pressure [mmHg] 7.00 23.00 15.12 2.10
Total arterial compliance [mL/mmHg] 0.10 3.80 1.86 0.90
Total peripheral resistance [mmHg.s/mL] 0.50 1.30 0.80 0.19
Heart rate [bpm] 61.11 10.00 82.57 8.15
Aortic diameter [cm] 2.00 4.00 3.00 1.00
Height [cm] 150.00 200.00 175.00 25.00
Brachial systolic blood pressure [mmHg] 81.80 199.20 133.71 25.07
Brachial diastolic blood pressure [mmHg] 39.73 125.69 76.06 21.86
Aortic systolic blood pressure [mmHg] 76.05 188.31 121.71 24.96
Carotid-to-femoral pulse wave velocity [m/s] 5.53 14.27 8.89 1.63
Cardiac output [L/min] 3.26 10.56 5.94 1.22
Ejection fraction [%] 29.74 69.31 50.83 6.81

4.3 Results

Table 4.2 aggregates the cardiovascular parameters of the in silico study population. The

comparisons between the model-derived predictions and the reference data are presented

below for each of the targeted outputs.

Prediction of aSBP, CO, and Ees from brSBP, brDBP, HR, and cfPW

For the four models, the comparison between the predicted aSBP and the actual aSBP is

presented in Table 4.3. The average difference (in absolute value) between the model-aSBP

and the reference aSBP was less than 5 mmHg in 87 % of the total cases for Random Forest, 89

% for SVR, 75 % for Ridge, and 88 % for Gradient Boosting, respectively. Accuracy, correlation

and agreement of model-CO estimates in comparison to the reference data are summarized in

Table 4.4. The difference between model-CO and reference CO was less than 0.3/0.5 L/min in

62/84 % of the population for Random Forest, 65/86 % for SVR, 50/74 % for Ridge, and 63/85 %

for Gradient Boosting. Finally, the Ees predictions are compared to the reference data in Table

4.5. High errors were reported for all of the regression models, whereas correlation between

the estimated and the reference data was significantly poor.

Prediction of Ees from brSBP, brDBP, HR, cfPWV, and EF

The statistics of the second regression analysis for Ees , i.e. after additional knowledge of EF,

are presented in Table 4.6. Differences between the predicted Ees and the actual Ees were
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Table 4.3 – Regression statistics between the model predicted aSBP and the reference aSBP.
The input features include brSBP, brDBP, HR, and cfPWV.

Model Slope
Intercept
[mmHg]

r R2 P-value
nRMSE

[%]
MAE

[mmHg]
RF 1.01 -1.13 0.99 0.98 <0.001 3.57±0.79 2.61±0.87
SVR 1.01 -1.00 0.99 0.98 <0.001 3.36±0.74 2.43±0.77
Ridge 0.99 1.64 0.98 0.96 <0.001 4.96±2.04 3.73±1.71
GB 1.01 -0.87 0.99 0.98 <0.001 3.55±0.88 2.58±0.90
Ensemble
Averaging (all)

1.01 -0.85 0.99 0.98 <0.001 3.53±1.00 2.59±1.01

Ensemble
Averaging
(RF, SVR, GB)

1.01 -1.13 0.99 0.98 <0.001 3.40±0.79 2.47±0.84

Table 4.4 – Regression statistics between the model predicted CO and the reference CO. The
input features include brSBP, brDBP, HR, and cfPWV.

Model Slope
Intercept
[L/min]

r R2 P-value
nRMSE

[%]
MAE

[L/min]
RF 0.99 0.03 0.95 0.90 <0.001 7.94±0.95 0.29±0.08
SVR 1.01 -0.06 0.96 0.92 <0.001 7.60±0.68 0.27±0.06
Ridge 0.99 0.05 0.93 0.86 <0.001 10.15±1.00 0.36±0.05
GR 1.00 0.01 0.95 0.90 <0.001 7.80±0.86 0.28±0.07
Ensemble
Averaging (all)

1.02 -0.11 0.96 0.92 <0.001 7.59±0.72 0.27±0.06

Ensemble
Averaging
(RF, SVR, GB)

1.01 -0.05 0.96 0.92 <0.001 7.48±0.73 0.27±0.06

Table 4.5 – Regression statistics between the model predicted Ees and the reference Ees . The
input features include brSBP, brDBP, HR, and cfPWV.

Model Slope
Intercept

[mmHg/mL]
r R2 P-value

nRMSE
[%]

MAE
[mmHg/mL]

RF 0.93 0.17 0.36 0.13 <0.001 17.02±0.63 0.30±0.02
SVR 0.87 0.30 0.35 0.12 <0.001 17.11±0.67 0.30±0.02
Ridge 1.00 -0.00 0.37 0.14 <0.001 16.96±0.64 0.30±0.02
GB 0.99 0.02 0.33 0.10 <0.001 17.23±0.72 0.31±0.02
Ensemble
Averaging
(all)

1.01 -0.02 0.37 0.14 <0.001 16.98±0.65 0.30±0.02

Ensemble
Averaging
(RF, SVR, GB)

0.99 0.02 0.36 0.13 <0.001 17.02±0.66 0.30±0.02
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Table 4.6 – Regression statistics between the model predicted Ees and the reference Ees . The
input features include brSBP, brDBP, HR, cfPWV, and EF.

Model Slope
Intercept

[mmHg/mL]
r R2 P-value

nRMSE
[%]

MAE
[mmHg/mL]

RF 1.02 -0.04 0.91 0.83 <0.001 7.57±0.92 0.13±0.02
SVR 1.00 0.00 0.92 0.85 <0.001 7.00±0.78 0.12±0.01
Ridge 0.97 0.06 0.87 0.76 <0.001 9.04±1.36 0.16±0.03
GB 1.00 -0.01 0.91 0.83 <0.001 7.43±0.81 0.13±0.01
Ensemble
Averaging
(all)

1.03 -0.08 0.92 0.85 <0.001 7.20±0.76 0.13±0.01

Ensemble
Averaging
(RF, SVR, GB)

1.02 -0.05 0.92 0.85 <0.001 7.04±0.70 0.12±0.01

found to be less than 0.05/0.20 mmHg/mL in the 47/78 %, 51/81 %, 39/70 %, and 47/78 % of

the entire population, for Random Forest, SVR, Ridge, and Gradient Boosting, respectively.

The scatterplots and Bland–Altman graphs for the best performing models are provided in

Figures 4.4, 4.5, and 4.6. The plotted data are corrupted with random noise (see Blending

the dataset with random noise in Methods). Table 4.7 presents the frequency of selection for

each hyperparameter value over the ten-fold CV for the best performing model. For the aSBP

and Ees estimators, we observed an apparent consistency for the values of the C and gamma

hyperparameters. Specifically, C and gamma were set at 100 and 0.001 for aSBP, and 10 and

0.001 for Ees , respectively, in the totality of the 10 folds. Such a consistency is not evident for

the CO estimator where C was set at 100 for the 60 % of the times. Nevertheless, gamma was

again consistently selected to be 0.001.

Sensitivity analysis for the training size

The training size, that is, the number of data instances used for training, plays a major role on

the accuracy of the predictions. To investigate the sensitivity to the number of training data,

the training size was modified from 95 to 15 % of the total number of cases (Figures 4.7, 4.8,

and 4.9). For all models except for Ridge, the RMSEs were increased gradually with decreasing

training size. For the Random Forest, SVR, and Gradient Boosting, the RMSEs of the aSBP

predictions were less than 4.20 mmHg. Using Ridge, the RMSE varied at a lesser extent, while it

was consistently higher compared to the rest of the models. For the CO predictions, all RMSE

values were less than 0.50 L/min. In particular, RMSE for SVR did not exceed 0.38 L/min, even

when only the 15 % of the entire population was used for the training. Finally, all RMSEs of Ees

estimations were equal or below 0.20 mmHg/mL.
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Table 4.7 – Statistical results in percentage of times that the hyperparameter value was selected
during the hyperparameter tuning with ten-fold cross validation process. Values selected
consistently are presented in bold.

Model
Hyper-
parameter

Values aSBP CO Ees

Times
selected [%]

Times
selected [%]

Times
selected [%]

SVR

C
1 0 % 0 % 0 %

10 0 % 40 % 100 %
100 100 % 60 % 0 %

gamma

0.001 100 % 100 % 100 %
0.01 0 % 0 % 0 %
0.1 0 % 0 % 0 %
1 0 % 0 % 0 %

Table 4.8 – Average feature importances for the prediction of aSBP, CO, and Ees .

Feature aSBP Feature CO Feature Ees

brSBP 0.98 brSBP 0.54 EF 0.65
brDBP 0.02 cfPWV 0.33 brDBP 0.16
HR 0.004 brDBP 0.08 HR 0.11
cfPWV 0.003 HR 0.04 cfPWV 0.05

brSBP 0.02

Feature importance evaluation

Figure 4.10 presents the correlation matrix reporting the inter-feature correlations, and the

correlations between the inputs and the target outputs. Table 4.8 presents the average impor-

tances of the input features, sorted in a descending order for predicting aSBP, CO, and Ees ,

respectively. For estimating aSBP, brSBP was found to be a critical contributor; the importance

level (0.98) indicated that brSBP should be sufficient for estimating aSBP. The features of brSBP

and cfPWV were the dominant contributors in the estimation of CO. Finally, EF was found

to play the most significant role in the Ees prediction, followed by brDBP and HR. To further

verify the sensitivity of the model’s performance to the input features, we present the RMSE

variation for different subsets of input features (only for the best performing models) (Table

4.9). For aSBP, it was shown again that the brSBP is the most pivotal predictor of aSBP; when

brSBP was removed from the input features, the RMSE increased significantly. On the contrary,

a precise prediction of CO requires the use of at least one of the brachial BP values; exclusion

of the latter resulted to a deterioration of the model’s performance. Finally, Ees appears to be

mainly sensitive to EF which significantly contributes to the accuracy of the Ees estimation.

Results of the hypothesis testing for the ordinary least squares (OLS) regression coefficients

are summarized in Table 4.10. All of the specified coefficients were statistically significantly

different from zero.
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Table 4.9 – Model performance for the best performing configurations (SVR) using different
subsets of the input features.

Input subsets
RMSE (r )

aSBP (SVR) CO (SVR) Ees (SVR)
brSBP, brDBP, HR,
cfPWV, EF

- - 0.15 mmHg/mL
(0.92)

brSBP, brDBP, HR,
EF

- - 0.17 mmHg/mL
(0.91)

brSBP, brDBP,
cfPWV, EF

- - 0.17 mmHg/mL
(0.91)

brSBP, HR, cfPWV,
EF

- - 0.22 mmHg/mL
(0.83)

brDBP, HR, cfPWV,
EF

- - 0.17 mmHg/mL
(0.91)

brSBP, brDBP, HR,
cfPWV

3.13 mmHg (0.99) 0.34 L/min (0.96) 0.37 mmHg/mL
(0.37)

brSBP, brDBP, HR 3.31 mmHg (0.99) 0.38 L/min (0.95) 0.38 mmHg/mL
(0.33)

brSBP, brDBP,
cfPWV

3.09 mmHg (0.99) 0.42 L/min (0.93) 0.38 mmHg/mL
(0.35)

brSBP, HR, cfPWV 3.88 mmHg (0.99) 0.59 L/min (0.85) 0.38 mmHg/mL
(0.35)

brDBP, HR, cfPWV 7.68 mmHg (0.94) 0.59 L/min (0.86) 0.38 mmHg/mL
(0.32)

Table 4.10 – t-statistics for the OLS regression coefficients.

aSBP CO Ees

Input
Feature

t-value P-value t-value P-value t-value P-value

Intercept -31.296 <0.001 -22.304 <0.001 -60.951 <0.001
brSBP 148.210 <0.001 82.000 <0.001 -12.704 <0.001
brDBP 11.241 <0.001 -51.739 <0.001 32.673 <0.001
cfPWV -9.087 <0.001 -18.746 <0.001 3.685 <0.001
HR 16.776 <0.001 47.129 <0.001 21.960 <0.001
EF 118.028 <0.001
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Table 4.11 – Distributions of the parameters of the in vivo population (n = 783).

Parameter Value (n = 783)
min max mean SD

Age [years] 28.00 88.00 60.83 11.47
Height [cm] 143.00 195.00 171.60 7.94
Weight [kg] 40.00 145.00 82.29 14.10
Heart rate [bpm] 41.00 107.00 64.06 10.65
Brachial systolic blood pressure [mmHg] 90.00 180.00 126.37 15.70
Brachial diastolic blood pressure [mmHg] 40.00 120.00 77.89 11.21
Central systolic blood pressure [mmHg] 82.00 172.00 117.95 15.18
Carotid-femoral pulse wave velocity [m/s] 4.70 19.60 8.92 2.25
Hypertension 64 %
Dyslipidemia 64 %
Smoking * 23 %
Renal transplant LD 1 %
Renal transplant DD 0.3 %
Breast cancer 2 %
Coronary artery disease 81 %
* 65 % of the remaining population declared to be smokers in the past.

In vivo evaluation of the aSBP estimations

After the in silico validation, the performance of the aSBP estimator was evaluated anew

using clinical data. The population included both women (n = 136) and men (n = 647). The

descriptive and clinical characteristics of the clinical population are presented in Table 4.11.

First, we assessed the capacity of an SVR model, which was trained using only in silico data,

to make an accurate prediction for the human population. Then, we compared the latter’s

performance with an SVR model which was trained using in vivo data. The regression statistics

between the model predictions and the reference data are summarized in Table 4.12. For the

in vivo data, the hypothesis testing’s results for the OLS regression coefficients are presented

in Table 4.13. Figure 4.11 provides the correlation matrix for the in vivo dataset.

4.4 Discussion

The present study demonstrated that accurate estimations of central hemodynamics (namely

aSBP and CO) and LV Ees from readily available non-invasive clinical measurements can

be obtained by using machine learning models. Our basic hypothesis was whether brSBP,

brDBP (cuff BP), HR, and cfPWV provide sufficient information to predict aSBP, CO, and Ees .

However, for the determination of Ees , data from peripheral pressure fall short to provide a

precise estimate. Our results indicated that additional information, such as the EF, which

is directly measured in the heart (rather than the periphery) may improve the non-invasive
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Table 4.12 – Regression statistics between the model predicted aSBP and the reference aSBP.
The input features include brSBP, brDBP, HR, and cfPWV. The testing set consists of in vivo
data only.

SVR (tested
using in vivo
data)

Slope
Intercept
[mmHg]

r R2 P-value
nRMSE

[%]
Bias (LoA)
[mmHg]

Model trained
using in silico
data

0.99 2.94 0.94 0.88 <0.001 5.93
-1.67

(8.62,-11.95)

Model trained
using in vivo
data

1.00 0.31 0.97 0.94 <0.001 5.26±2.3
0.43

(8.73,-7.88)

Table 4.13 – t-statistics for the OLS regression coefficients.

aSBP
Input Feature t-value P-value
Intercept 6.504 <0.001
brSBP 91.182 <0.001
brDBP 12.094 <0.001
cfPWV 3.296 <0.001
HR -18.110 <0.001

Ees predictions. To our best knowledge, this is the first work to evaluate the use of machine

learning models in predicting cardiac contractility.

The best performing prediction model for all three target outputs was SVR which outperformed

the other models accomplishing the highest accuracy. The Ees estimation was effectively

achieved only with the inclusion of EF in the set of input features. In order to evaluate the

robustness of our regression models, sensitivity to the training size was investigated. The

RMSE was gradually increased with decreasing the number or training samples for Random

Forest, SVR, and Gradient boosting. Variations were less distinct for Ridge. Despite the

increase in RMSE with changes in the training size, the errors lied within acceptable limits

[62; 66; 67; 68; 69] for Random Forest, SVR, and Gradient Boosting.

Moreover, we tested the performance of an ensemble predictor which used averaging of

the single models’ predictions. The ensemble prediction model did not outperform the

best performing single prediction model (SVR). However, such an approach may benefit the

estimations’ accuracy by reducing the variance of the predictor and thus may improve the

model’s generalization ability [70]. To avoid overwhelm the reader with an exhaustive report

of several other approaches, we did not explore other ensemble learning techniques. Such an

extensive exploration of different ensemble techniques would be out of the scope of this study.
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Figure 4.4 – Comparison between the estimated and the reference aSBP data. Scatterplot and
Bland–Altman plot between the predicted aSBP (using the SVR model) and the reference aSBP
(using the in silico data). The solid line of the scatterplots represents equality. In Bland–Altman
plot, limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by
the two horizontal dashed lines. Adapted from [37].

Following the in silico validation, in vivo validation was performed only for the aSBP. The aSBP

predictions were found to be precise in the both investigated scenarios, i.e. SVR trained with

in silico data, and SVR trained with in vivo data. The accuracy was slightly higher in the second

scenario despite the smaller size of the training dataset. This is expected if we consider that the

in vivo data may contain more physiologically relevant content and thus be more informative

compared to the in silico data in the training of the model. Interestingly, the hyperparameter

tuning led to the same selection for the hyperparameters C = 100 (selected 100 % of the times)

and gamma = 0.001 (selected 100 % of the times) when the SVR model was validated using the

in vivo population. These findings may verify that the in silico predictive models can be rather

informative for the design of clinical studies.

The principal reason that brSBP, brDBP, HR, and cfPWV were selected as the model inputs was

the simplicity of their measurement in a clinical setting. Brachial cuff pressure constitutes

a readily available and cost-efficient measurement in traditional medicine. At the same

time, the use of pressure-based cfPWV is steadily increasing, as a result of numerous studies

116



4.4. Discussion

2 4 6 8 10 12
Reference CO [L/min]

2

4

6

8

10

12

Es
tim

at
ed

 C
O

 [L
/m

in
]

Scatterplot

2 4 6 8 10 12
Average CO [L/min]

2

1

0

1

2

C
O

 E
rro

r [
L/

m
in

]

Upper LoA: 0.68 L/min

Bias: -0.01 L/min

Lower LoA: -0.7 L/min

Bland-Altman analysis

Figure 4.5 – Comparison between the estimated and the reference CO data. Scatterplot and
Bland–Altman plot between the predicted CO (using the SVR model) and the reference CO
(using the in silico data). The solid line of the scatterplots represents equality. In Bland–Altman
plot, limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by
the two horizontal dashed lines. Adapted from [37].

demonstrating its importance as an independent predictor of cardiovascular disease [71; 72;

73]. The convenience and the cost-efficiency of the aforementioned measurements render

them suitable for easy, non-invasive, regular medical check-ups.

Based on the feature importances’ assessment, the aSBP prediction was found to be deter-

mined mainly from the brSBP. The strong dependency between aSBP and brSBP errors is to be

expected, given that the two values are strongly related to mean BP, which is practically the

same in both the aorta and the brachial artery. Moreover, brSBP seemed to be a significant

predictor of CO. Resistance, and thus mean BP, is a strong determinant of CO. Given that brSBP

is related to mean BP, this means that brSBP is indirectly related to CO. In addition, cfPWV

is a measure of arterial compliance, which is also determinant of stroke volume and thus

CO. Finally, EF and Ees have been reported to be positively correlated [74] and this further

explains the high importance level of EF for predicting Ees . The results using different subsets

of the input features further verified each feature’s contribution to the predictions of the target
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Figure 4.6 – Comparison between the estimated and the reference Ees data. Scatterplot and
Bland–Altman plot between the predicted Ees (using the SVR model) and the reference Ees

(using the in silico data) with the ejection fraction as regression input. The solid line of the
scatterplots represents equality. In Bland–Altman plot, limits of agreement (LoA), within which
95 % of errors are expected to lie, are defined by the two horizontal dashed lines. Adapted
from [37].

output variables.

Prior work proposed by Xiao et al. [75] used an artificial neural network (ANN) to predict aSBP

from invasive radial SBP and DBP, and HR. The differences between the predicted aSBP and

the measured aSBP were found to be low and equal to -0.30 ± 5.90 mmHg. Despite providing

accurate results, invasive radial BP is not commonly measured on a regular basis, and thus its

modelling imposes a substantial limitation on the clinical application of their proposed model.

When an ANN with the same configuration, as the one reported in the study of Xiao et al.,

was employed to estimate aSBP in our study, the results indicated a similarly good prediction

performance. In particular, the employment of the ANN using only the in silico data (n = 4,018)

achieved an RMSE = 3.79 ± 1.88 mmHg and r = 0.99 (P-value < 0.001). Training/testing the

ANN with only the in vivo data (n = 783) achieved an RMSE = 3.38 ± 1.09 and r = 0.97 (P-value <

0.001). In the case of the in vivo data, we observed that the accuracy is slightly improved by

the use of ANN compared to the best performing configuration (SVR achieved an RMSE = 3.53

± 1.27 mmHg, r = 0.97, P-value < 0.001).
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Figure 4.7 – Sensitivity of RMSE to changes in the training size for the aortic systolic blood
pressure (aSBP) estimator. RMSE root mean square error; RF random forest; SVR support
vector regressor; GB gradient boosting. Adapted from [37].

In general, the majority of previous aSBP estimators relies on features extraction from the

pressure waveforms [75; 76]. In our approach, apart from peripheral SBP and DBP, and HR,

we incorporated the cfPWV measurement. The idea was that cfPWV being an index of aortic

stiffening would improve the performance of the model and strengthen the clinical relevance

of our results. However, feature importances indicated that brSBP may be sufficient for

estimating aSBP. Using only brSBP, brDBP, and HR as inputs would not alter significantly the

accuracy of the estimation of aSBP (using the in silico data); namely, the RMSE would slightly

increase from 3.13 to 3.31 mmHg for the best performing model. In the case that only brSBP

and brDBP were used as input features, the accuracy would deteriorate with a RMSE of 3.46

mmHg which could still be acceptable. The use of only brSBP as an input, however, would

essentially increase the error at 5.33 mmHg. For the clinical dataset, the same errors were

equal to 3.52 mmHg (brSBP, brDBP, HR as inputs) and 4.11 mmHg (brSBP, brDBP as inputs).

Finally, using only the brSBP predictor would lead to an RMSE = 4.20 mmHg.

In addition to prediction models for aSBP, estimation of CO from arterial BP characteristics

has been a fertile area of research. Dabanloo et al. [25] has evaluated the performance of

neural networks in predicting CO from invasive arterial pressure waves. Upon comparison

between the predicted CO and thermodilution-derived CO, their best performing model

provided a mean absolute error equal to 0.54 L/min and a correlation coefficient of 0.89.

Nevertheless, their model made use of the entire pressure waveform, from which input features

were extracted, whereas it provided only an uncalibrated estimation of CO rather than its

absolute value.

The results presented in this study are also compliant with the findings of Bikia et al. [49], who

suggested that brachial BP and cfPWV can be used to predict central SBP and CO (RMSE equal
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Figure 4.8 – Sensitivity of RMSE to changes in the training size for the cardiac output (CO)
estimator. RMSE root mean square error; RF random forest; SVR support vector regressor; GB
gradient boosting. Adapted from [37].

to 2.46 mmHg and 0.36 L/min, respectively). Following an inverse problem-solving approach,

a generalized model of the cardiovascular system was adjusted to quasi- patient-specific

standards using measurements of brSBP, brDBP, HR, and cfPWV. Additional geometrical infor-

mation on the aortic diameter size of each subject was also integrated. The aortic diameter

was approximated using previously published age- and BSA-related data [44]. A similar ap-

proximation of the aortic geometry could be embedded in the present study and improve the

accuracy of the results. Therefore, employment of machine learning on clinical data could

be further reinforced with the inclusion of additional input features such as age, height, and

weight. However, given that the errors are already rather low, it is not anticipated that such an

improvement would be of particular clinical significance.

Additionally, this study aimed to effectively predict Ees while utilizing a small number of

required inputs. Chen et al. [26] proposed a method to estimate Ees from cuff pressure, stroke

volume, and EF. Their method provided accurate predictions of Ees with differences equal

to 0.43 ± 0.50 mmHg/mL. In contrast to Chen’s approach, we excluded stroke volume from

our input vector and, on the other hand, we introduced cfPWV which constitutes an index of

aortic stiffness and thus a powerful index of arterio-ventricular coupling [77]. In an attempt to

remove EF from the set of inputs, Ees was found to be poorly predicted. This underachieving

performance may be rather expected given that a specific combination of brachial SBP and

DBP, and cfPWV might not be unique for only a particular Ees value. Importantly, our study

emphasized on the significance of EF in accurately predicting Ees .

The use of EF is further encouraged from the fact that EF constitutes a non-invasive parameter

which can be derived via several cardiac imaging modalities. The Simpson’s method [78]

has been the most commonly used technique; however, it might underestimate EF when
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Figure 4.9 – Sensitivity of RMSE to changes in the training size for the end-systolic elastance
(Ees) estimator. RMSE root mean square error; RF random forest; SVR support vector regressor;
GB gradient boosting. Adapted from [37].

compared to the magnetic resonance imaging (MRI), which has been shown to be the gold

standard non-invasive technique for assessing LV function and thus EF [79]. Of course, the

latter are not considered as convenient and cost-efficient as a cuff- or tonometry-based

pressure measurement. It is likely that the EF-related information may be derived from

another measured parameter which is directly or indirectly related to the cardiac contractility,

e.g. electrical signals of cardiac events [80]. Further investigation towards this direction will be

conducted in future work.

It should be noted that the aim of the current study is not to propose necessarily a tool that

could provide simultaneous predictions of aSBP, CO, and Ees . The models developed in this

study could be considered as independent predictors for each of the target parameters in

different clinical occasions. In particular, aSBP and CO are major hemodynamical indices

that are often useful to the clinician and their non-invasive estimation is highly desirable in

a routine clinical examination. On the other hand, Ees is less often required. Currently, Ees

is measured invasively with the acquisition of the LV pressure–volume loops. The invasive

nature of this technique severely limits the use of Ees in clinical practice.

The booming of data has led to efforts of transferring one type of information to another using

machine learning models. Specifically, in relation to patho-physiology, the advancement on

measuring and imaging techniques has encouraged the employment of machine learning for

estimating clinical pathophysiological indices and validating their results. This promising

area of research could not exclude applications on cardiovascular health [25; 75; 81; 82]. High

correlation between peripheral pressure and central aortic pressure indicates the potential

to estimate the latter from the former. However, the correlations for a complete set of car-

diovascular variables have not been thoroughly investigated. In this work, we performed a

first study to elucidate which input parameters (non-invasive measurements) are considered
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Figure 4.10 – Correlation matrix for the in silico dataset. Adapted from [37].

necessary when machine learning is employed for predicting aortic hemodynamics and con-

tractility index (invasive measurements). A major advantage of the present study pertains to

the well-balanced dataset that was used for the training/testing scheme. The use of synthetic

data allowed for covering a wide range of hemodynamical characteristics, whereas it provided

us with access to cardiovascular quantities which are difficult to obtain non-invasively in the

real clinical setting, i.e. aortic BP or Ees .

Cardiovascular models have attracted great interest due to the increasing impact of cardiovas-

cular disease. They have provided a valuable alternative for the assessment of pressure and

flow in the entire arterial network providing additional pathophysiological insights, which are

difficult to acquire in vivo. Numerous previous studies have used in silico data for the estima-

tion of aortic BP, cardiac output, aortic PWV and many more [83; 84; 85; 82; 86]. Importantly,

in silico studies allow for the preliminary evaluation of predictive models across a wide range

of cardiovascular parameters [28] in a quick and cost-efficient way, while their results can be

rather informative of the design of clinical studies [87; 88].

Limitations

Several limitations need to be acknowledged. The data used for the training/testing scheme

were derived from a simulator instead of a real human population. While synthetic data can
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Figure 4.11 – Correlation matrix for the in vivo dataset. Adapted from [37].

mimic numerous properties of the real clinical data, they do not copy the original content

in an identical way. Nevertheless, the goal here was to define the minimum necessary input

information that is required to estimate aortic hemodynamics and Ees . Thus, despite that the

use of synthetic data might not lead to exactly the same results with the results coming from

clinical data, it should not undermine the reliability of the study’s findings. The latter has been

verified by the in vivo validation of our aSBP estimations. Clinical validation was not possible

for the CO and Ees estimators, due to the lack of the respective data. At the initial stage of our

research, we found it reasonable to start with an in silico validation of our predictive models,

instead of collecting measurements of CO and Ees in a large cohort. In addition, the cost and

the complexity of the respective measurements would make it difficult to incorporate them in

the current study. Future work should include the use of real-world data for all parameters that

will finally verify the application of the proposed method in the clinical setting. Finally, the

proposed models have been designed and tested on data coming from a generalized model

of the cardiovascular system which was developed according to published data [32]. Hence,

the precision of the predictions might be compromised in the case of pathological conditions,

such as atherosclerosis, aneurysm or aortic valve disease. It is of great importance that in vivo

validation of the models should be conducted using pathological clinical data as well.
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Conclusion

In summary, this study showed that the use of non-invasive arm cuff pressure and PWV alone

potentially allows for the estimation of aSBP and CO with acceptable accuracy. This might

not be the case for Ees prediction. Nevertheless, the estimated Ees can be greatly improved

when EF is used as an additional input in the prediction model. Following validation on

in vivo invasive data, this approach may provide a promising potential in the prediction of

aortic hemodynamics and LV contractility using unintrusive, readily available standard clinical

measurements.
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Abstract

Left ventricular end-systolic elastance (Ees) is a major determinant of cardiac systolic function

and ventricular-arterial interaction. Previous methods for the Ees estimation require the

use of the echocardiographic ejection fraction (EF). However, given that EF expresses the

stroke volume as a fraction of end-diastolic volume (EDV), accurate interpretation of EF is

attainable only with the additional measurement of EDV. Hence, there is still a need for a

simple, reliable, non-invasive method to estimate Ees . This study proposes a novel artificial

intelligence-based approach to estimate Ees using the information embedded in clinically

relevant systolic time intervals, namely the pre-ejection period (PEP) and ejection time (ET).

We developed a training/testing scheme using virtual subjects (n = 4,645) from a previously

validated in silico model. Extreme Gradient Boosting regressor was employed to model Ees

using as inputs arm cuff pressure, PEP, and ET. Results showed that Ees can be predicted with

high accuracy achieving a normalized RMSE equal to 9.15 % (r = 0.92) for a wide range of

Ees values from 1.2 to 4.5 mmHg/mL. The proposed model was found to be less sensitive

to measurement errors (±10 % to 30 % of the actual value) in blood pressure, presenting
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low test errors for the different levels of noise (RMSE did not exceed 0.32 mmHg/mL). In

contrast, high sensitivity was reported for measurement errors in the systolic timing features.

It was demonstrated that Ees can be reliably estimated from the traditional arm pressure and

echocardiographic PEP and ET. This approach constitutes a step towards the development of

an easy and clinically applicable method for assessing left ventricular systolic function.
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5.1. Introduction

5.1 Introduction

The concept of end-systolic elastance (Ees), first introduced by [1], has become widely ac-

cepted. The Ees , i.e. the slope of the end-systolic pressure-volume relationship (ESPVR),

constitutes a pivotal determinant of left ventricular (LV) systolic performance and is now

considered an established index of contractility [2; 1; 3]. Assessment of Ees is of high impor-

tance in physiological studies and clinical practice. The effective matching between Ees and

vascular load leads to optimal mechanical function. Age-related arterial stiffening [4] and

hypertension [5] are related to the stiffening of the left ventricle, which is accompanied by an

increased value of Ees . It has also been shown that antihypertensive treatment reduces Ees and

enhances arterial-ventricular coupling [6]. Furthermore, the intercept of the ESPVR has been

linked with prognosis in chronic heart failure [7]. Derivation of Ees requires the measurement

of multiple invasive pressure-volume (P-V) loops under various loading conditions which

limits its use in the routine clinical setting. In an attempt to address this limitation, research

has been directed towards the development of methods for deriving Ees from easily obtained

non-invasive single-beat measurements [8; 9; 10].

In our previous work [11], we demonstrated that Ees could be accurately determined using

brachial systolic (brSBP) and diastolic blood pressure (brDBP), heart rate (HR), and ejection

fraction (EF). The importance of EF on obtaining an accurate Ees estimation has been also

indicated by other published methods [8; 9]. Nevertheless, accurate interpretation of EF

renders essential the additional knowledge of physical determinants of myocardial contraction,

namely the preload and afterload [12; 13]. The question that arises is whether Ees could be

derived in a faster and more optimized way while reducing the complexity of the required

measurements. Our primary hypothesis is that EF information could be replaced by other

cardiac functional parameters, e.g. electrical or acoustic signals of cardiac events, that are

related to the LV contractility in a direct or indirect manner.

Previous studies have highlighted the relevance of the timing of cardiac events in assessing

the contractile state of the heart [14; 15; 16]. Pre-ejection period (PEP), i.e. the period between

the onset of ventricular contraction and the aortic valve opening, serves as a major index of

excitation-contraction coupling and may potentially be used to evaluate contractility [17; 18].

Concurrently, LV ejection time (ET), delimited by the opening and closing of the aortic valve,

provides incremental prognostic information on cardiac performance [16; 19].

The objective of this study was to propose a novel method for the estimation of Ees using

brSBP, brDBP, HR (via sphygmomanometry), and contractility-related timing parameters

(via ECG and echocardiography), i.e. PEP and ET. The analysis relied on the use of machine

learning regression analysis. To appraise our concept, we developed and evaluated this

method using synthetic data generated from a previously validated in silico model [20]. An in

silico model constitutes a computer program that allows for simulating human physiology,
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cardiovascular mechanisms, and/or progression of disease. The utility of such models in

medicine has essentially facilitated the visualization and prediction of physiological responses

under different cardiovascular conditions. In the present study, the in silico model provides

additional hemodynamic insights, which would be difficult to acquire in vivo, and is used for

the preliminary assessment and design of the proposed methodology.

5.2 Methods & materials

Data analysis

Study population

The population used in the present in silico study reflected a wide range of hemodynamical

properties and states. Different hemodynamic cases (n = 4,645) were simulated by modifying

key cardiac and systemic parameters of a previously validated in silico model. The /one mathe-

matical cardiovascular model, which was adopted in the current study, has been well described

in [20]. The arterial tree model incorporates all the major arteries of the systemic circulation,

as well as a detailed network representation of the cerebral circulation and the coronary cir-

culation. The governing equations of the model are acquired by integrating the longitudinal

momentum and continuity of the Navier-Stokes equations over the arterial cross-sectional

area. By solving the governing equations with proper boundary conditions, flow and pressure

are obtained in all arterial locations. The arterial segments of the model are considered as

long tapered tubes, and their compliance is calculated by a nonlinear function of pressure and

location as described by Langewouters [21]. Distal vessels are terminated with three-element

Windkessel models [22] and intimal shear is modeled using the Witzig-Womersley theory [23].

At the proximal end, the arterial tree is coupled with a varying elastance model of the left

ventricle [1; 3]. This time-varying elastance model (VEM) describes the relationship between

the LV pressure, PLV , and volume, VLV , namely:

E(t ) = PLV (t )

VLV (t )−Vd
(5.1)

where Vd indicates the dead volume of the left ventricle. Further details on the 1-D model can

be found in the original publications [20; 24].

Concerning data generation, Ees varied in the range of 1–4.5 mmHg/mL so that the dataset

includes cases with normal as well as dilated and hypertrophied hearts [25; 4; 26]. The filling

pressure lied in the range of 7–23 mmHg according to [25; 4; 26]. The dead volume (Vd ) and

the time of maximal elastance (tes) were modified according to [27; 20]. The HR values were

within the range of 60 and 100 bpm. Total peripheral resistance and arterial compliance were

altered to simulate a wide variety of arterial tree configurations [21; 28; 29]. In addition to the
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modification of cardiac and systemic parameters, arterial geometry was changed with respect

to arterial length and diameter for each segment to approximate different body types [44; 30].

The variation of the geometry was done in a uniform way for all arterial segments based on

the variation of the aortic diameter. No topological variations (e.g. in the circle of Willis,

number of branches from aortic arch, etc.) were considered. Nonuniform aortic stiffening was

considered for the elderly and hypertensive virtual subjects following the approach described

in Bikia et al. [11].

Given that the literature data are only provided in terms of mean and standard deviation

or/and minimum and maximum values, we chose to perform random Gaussian sampling for

varying the model’s parameters. We filtered the generated data to ensure that they correspond

to physiological human conditions. Particularly, the physiological validity of each subject

was assessed by comparing the simulated brachial and aortic systolic blood pressure (SBP),

DBP, MAP, and pulse pressure (PP) to the reference values reported in the previous studies

by McEniery et al. [31] (normotensive cases) and [32] (hypertensive cases). A subject was

discarded from the dataset if any of the blood pressure values was not satisfying the minimum

and maximum thresholds indicated as mean ± 2.807SD (99.5 % confidence intervals). Such an

approach for generating synthetic data has been applied by a previous similar study [33].

Figure 5.1 – Representative elastance curve E(t) with the indicated ted (early time point of
isovolumic contraction), tad (ending time point of isovolumic contraction), and tes (end-
systolic time point). Adapted from [34].
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Table 5.1 – List of the hyperparameters which were chosen to be optimized and their corre-
sponding values.

Hyperparameter Values
learning_rate {0.005, 0.01, 0.05, 0.1, 0.15}
max_depth {3, 5, 10}
n_estimators {500, 750, 1,000, 1,250, 1,500, 1750}

Table 5.2 – List of the selected hyperparameters for all the predictive models.

Model Selected hyperparameters
learning_rate max_depth n_estimators

XGBEes M1 0.05 3 1,750
XGBEes M2 0.01 3 1,500
XGBEes M3 0.1 3 1,250
XGBV d M1 0.01 3 500
XGBV d M2 0.01 3 500
XGBV d M3 0.1 3 1,750

Features extraction

The relevant features were extracted from the flow and pressure waves produced by the in

silico model. Synthetic brSBP, brDBP, brPP as well as HR data were calculated from the pressure

wave at the left brachial artery.

Normally, PEP and ET could be extracted from the synchronous recordings of the aortic blood

flow and the ECG signal. Here, the values of PEP and ET were derived following Shishido et

al. [8], as illustrated in Figure 5.1. The reason that we employed this approach to calculate

PEP and ET was the absence of a model of cardiac electrical activity that would indicate the

starting position of Q-wave. PEP was calculated as the duration of the isovolumic contraction.

The early isovolumic point (ted) was defined as the time point when the time derivative of LV

pressure is above 30 % of dP/dtmax. The end of the isovolumic contraction (tad ) was calculated

from the first inflection point of the elastance curve at the upstroke area. End-systole (tes) was

measured as the time point when dP/dt reaches 20 % of dP/dtmi n . PEP and ET were obtained

as tad -ted and tes-tad , respectively.

Regression analysis

The dataset was organized in pairs of inputs and outputs in order to be used for the train-

ing/testing process. The input features included the “measured” brSBP, brDBP, HR, PEP, and

ET, as well as the ted , tad , and tes . The inclusion of the latter timing points was done to

improve the descriptive cardiovascular profile of each subject and further enhance the regres-

sor’s performance. Furthermore, a predictive model was developed including stroke volume
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(SV) and ejection fraction (EF) as additional input features. Hence, three predictive models

were developed and evaluated based on the different inputs’ sets: i) one using brSBP, brDBP,

HR, PEP, ET, ted , tad , and tes (M1), ii) a second one with only brSBP, brDBP, HR, PEP, and ET

(M2), and finally, iii) a third model including all features from model M1 as well as SV and EF

(M3). We additionally investigated the predictive capacity of our framework to estimate Vd .

Nevertheless, the estimation of Vd was not considered as the main focus of the present study.

We used Extreme Gradient Boosting (XGB) [35] for the regression analysis. The 70 % of the

dataset (3,251 subjects) was used for the training of the XGB model. The remaining 30 %

(1,394 subjects) was kept for the testing. The regressor f (·) was described as YEes ≈ fEes(X ;β),

where β represents the unknown model parameters, X , the independent variables, and YEes ,

the dependent variable. The unknown parameters of the model were optimized via an inner

cross validation loop, i.e. hyperparameter tuning. Hyperparameter tuning was performed

using GridSearch with ten-fold cross validation. The hyperparameters that were chosen to

be optimized are reported in Table 5.1. The hyperparameters’ values that are not reported

in Table 5.1 were set to their default value. The selected hyperparameters’ values for the six

predictive models are also reported in Table 5.2. Consequently, the prediction accuracy for

each regression model was evaluated on a subject level.

We assessed the importance of each input feature using two concepts, i.e. the feature im-

portance scores returned by the XGB model, and the permutation feature importances. A

major difference between the two concepts is that the feature importances from XGB are

calculated based on the learning process through the training data, while the permutation

feature importances are yielded from the estimations on a test set.

More specifically, the feature importance by XGB provides a score that indicates how useful

and valuable each feature was in the construction of the boosted decision trees within the

model. The hierarchical structure of a decision tree leads us to the final prediction by traversing

through the nodes of the tree. Each node consists of a feature which is further split into more

nodes as the tree develops vertically. The more times a feature is used to make key decisions

with decision trees, the higher its relative importance. Formally, the feature importance score

is calculated for a single decision tree by the amount that each feature split point improves

the performance measure, weighted by the number of observations the node is responsible

for. The feature importance scores are then averaged across all of the trees within the model.

This importance is calculated explicitly for each feature and allows features to be ranked and

compared to each other.

We additionally provide the permutation feature importances which are helpful to interpret

the changes in model’s performance when the information of a feature is discarded. The

concept of permutation feature importances relies on measuring the importance of a fea-

ture by calculating the increase in the model’s prediction error after permuting the feature.

Permutation of a feature is achieved by shuffling the values of the feature on the test set. A

141



Chapter 5. Artificial intelligence-based estimation of end-systolic elastance from arm
pressure and systolic timing intervals

feature is considered as significant if shuffling its values increases the (trained) model error,

demonstrating that the model relied on the feature for the prediction. A feature is unimportant

if shuffling its values does not change the model error, showing that the model ignored the

feature for the prediction. The concept of permutation feature importance was first intro-

duced by Breiman [36]. Essentially, permutation feature importances express the increase

in model error when the feature’s information is destroyed. For calculating the permutation

importances, we randomly shuffled the values of each feature and we computed the RMSE

after the permutation. This was repeated 20 times and the mean and standard deviation of

the increase in RMSE were reported.

Moreover, the accuracy of a machine learning regressor is largely dependent on the size of

the initial training datasets. Thus, the investigation of how large a training dataset needs to

be in order to build a reliable predictive model is imperative. To obtain this information the

learning curve was computed. Learning curves allow for visualizing the effect of the number

of data instances on the performance. The learning curve was fitted using the observed

accuracy (in terms of RMSE) according to a given training sample size. The training size was

modified from 1 to 98 % of the total number of subjects (50 samples of training size). The

learning curve is presented in Figure 5.2. We observed that as the number of training data

increases, the RMSE of testing decreases and starts saturating while approaching the 4,000

data instances. Given that it is not clear whether a steady state is utterly achieved (a state

where no substantial improvement occurs by increasing the number of training data), we

decided to include all the training dataset for performing the regression analysis. Hence, the

model with the selected hyperparameters was fit to the entire training set (n = 3,251), and the

performance metrics reported in the Results’ section correspond to the testing set (n = 1,394).

The training/testing pipeline was implemented using the Scikit-learn library [37] in a Python

programming environment. The Pandas and NumPy packages were also used [38; 39].

Sensitivity to noise

We assessed the sensitivity of our model to errors in the measurement of PEP and ET. In

addition, sensitivity analysis was performed for errors in the blood pressure measurements

(i.e. amplitude of brachial pressure waveform). The data were artificially corrupted using

three levels of errors, i.e. ±10 %, ±20 %, and ±30 % with respect to their actual value. Errors

in measurements were simulated with a random distribution, i.e. for a noise level equal to

±20 %, the error of each measurement was randomly drawn from the range of [-20, 20] %. The

effect of erroneous inputs was evaluated and the model’s performance was reported for the

six experiments [3 noise levels x 2 sets of inputs (systolic timing intervals and blood pressure

values)]. The experiments were performed using the hyperparameters which were selected

from the M1 model (Table 5.2) which did not account for the noise.
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Figure 5.2 – Learning curve visualizing the effect of the number of data instances on the
model’s performance. Adapted from [34].

Statistical analysis

The statistical analysis was performed in Python (Python Software Foundation, Python Lan-

guage Reference, version 3.6.8, Available at http://www.python.org). All values are presented

as mean ± SD. The agreement, bias, and precision between the model predictions and the real

values were evaluated by using the Pearson’s correlation coefficient (r ), the mean absolute

error (MAE), the normalized root mean square error (nRMSE), and the Bland-Altman analysis

[40]. The computed nRMSE was based on the difference between the minimum and maxi-

mum values of the dependent variable (y) and was computed as RMSE/(ymax – ymi n). Linear

least-squares regression was performed for the estimated and reference data. The slope and

the intercept of the regression line were reported. Two-sided P-value for a hypothesis test

whose null hypothesis is that the slope is zero, using Wald test with t-distribution of the test

statistic, was calculated. A P-value below 0.05 was considered as statistically significant.

5.3 Results

Table 5.3 summarizes the cardiac and vascular characteristics of the 4,645 subjects included in

this study.
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Table 5.3 – Summary of the cardiovascular characteristics of the virtual study cohort (n =
4,645).

Variable
mean±SD
n = 4,645

End-systolic elastance [mmHg/mL] 3.06±0.74
End-diastolic elastance [mmHg/mL] 0.13±0.04
Filling pressure [mmHg] 15.32±3.47
Heart rate [bpm] 79.61±8.27
Dead volume [mL] 22.68±14.07
Ejection fraction [%] 53.74±9.33
tes [ms] 355.09±26.24
tad [ms] 65.75±18.46
ted [ms] 13.25±1.02
Pre-ejection time [ms] 52.5±18.19
Ejection time [ms] 289.35±26.85
Stroke volume [mL] 78.7±21.62
Aortic systolic blood pressure [mmHg] 132.32±24.67
Aortic diastolic blood pressure [mmHg] 100.73±16.97
Aortic PP [mmHg] 31.59±13.47
Mean arterial pressure [mmHg] 115.4±19.92
Brachial systolic blood pressure [mmHg] 141.41±25.89
Brachial diastolic blood pressure [mmHg] 97.77±16.59
Brachial PP [mmHg] 43.64±16.61
PP amplification 1.41±0.10
Total peripheral resistance [mmHg.s/mL] 1.13±0.23
Total arterial compliance [mL/mmHg] 1.97±0.69
Aortic diameter [mm] 28.57±1.95
Height [cm] 175.00±25.00
PP amplification = Brachial PP/Aortic PP.
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Table 5.4 – Regression statistics between the model-predicted Ees and the reference Ees .

Model Slope
Intercept

[mmHg/mL]
r P-value

nRMSE
[%]

MAE
[mmHg/mL]

XGBEes M1 0.83 0.53 0.92 <0.0001 8.54 % 0.22
XGBEes M2 0.52 1.45 0.74 <0.0001 15.26 % 0.41
XGBEes M3 0.88 0.38 0.95 <0.0001 7.32 % 0.19

Model Slope
Intercept

[mL]
r P-value

nRMSE
[%]

MAE
[mL]

XGBV d M1 0.00 22.55 <0.1 0.79 25.79 11.92
XGBV d M2 0.00 22.58 <0.1 0.79 25.79 11.91
XGBV d M3 0.86 3.28 0.93 <0.0001 9.12 3.62

Comparison between the estimated Ees and the reference Ees

Table 5.4 displays the statistical comparisons between the non-invasive Ees estimates and the

reference Ees . The Bland-Altman plot shows that the estimated Ees had low bias. The limits of

agreement between the estimated and reference Ees (within which 95 % of errors are expected

to lie) were found to be (-0.57, 0.60) mmHg/mL. The scatterplot and the Bland- Altman plots

of the estimated Ees against the real Ees are presented in Figures 5.3, 5.4, and 5.5. Finally,

standard error of estimate (SEE) was reported to be 0.15 mmHg/mL. The absolute difference

between the non-invasive Ees estimates and the real Ees values was reported to be lower than

0.5 mmHg/mL in 91 % of the total cases for XGB. At large, the regressor performed adequately

towards the accurate prediction of Ees .

The results for the Vd estimation are also reported in Table 5.4. For the XGBVd M1 and XGBVd

M2 models, no agreement was achieved between the predictions and the reference data (r <

0.1). Inclusion of the SV and EF led to improved accuracy, achieving a nRMSE equal to 9.12 %

and a correlation of 0.93. Figure 5.6 illustrates the scatterplot and the Bland-Altman plot for

the predicted and real Vd values only for the best-performing model (XGBVd M3).

Table 5.5 presents the average permutation importances of the input features, sorted in

descending order for predicting Ees . Following the concept of permutation, ted , tes and PEP

yielded the highest increase in the prediction error on test data (increase in RMSE was equal

or more than 0.46 mmHg/mL). The XGB-based feature importances are also given in Table 5.5.

PEP had a critical contribution (0.440) followed by tad and tes with 0.186 and 0.107,respectively.

Sensitivity to noise

When the systolic time intervals, i.e. PEP and ET, were randomly overestimated or underes-

timated, the performance of the model gradually deteriorated. Corruption of the data with

random noise gave a rise to the error between the predictions and reference values. The
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Table 5.5 – Feature importances for the prediction of Ees .

Feature
Permutation importance

[mmHg/mL]
mean±SD

Importance score by XGB

ted 0.460±0.005 0.099
tes 0.400±0.006 0.107
PEP 0.139±0.003 0.440
brDBP 0.032±0.001 0.073
ET 0.025±0.001 0.015
brSBP 0.022±0.001 0.030
HR 0.006±0.001 0.050
tad 0.001±0.000 0.186

performance of the model for the different levels of noise is presented in Table 5.6. Standard

deviation of the RMSE values at the noise levels was ±0.11 mmHg/mL. At the level of maximal

noise (±30 %), RMSE reached the value of 0.55 mmHg/mL, while the Pearson’s correlation coef-

ficient substantially decreased at 0.68. The estimated Ees values were considerably influenced

by noise corruption.

Errors in brachial blood pressure measurements impacted to a lesser extent the estimation of

Ees . With increasing the magnitude of the introduced noise, we did not notice a pronounced

variation in the RMSE after the noise level of 20 %, namely RMSEs varied by ±0.01 mmHg/mL.

When the noise level was ±30 %, RMSE found to be equal to 0.32 (r = 0.91) for the XGB model.

Overall, cardiac elastance values were minimally affected.

5.4 Discussion

In the present study, we found that Ees could be estimated non-invasively from arm cuff

pressure and systolic time intervals following a machine learning approach. We developed

and tested our method using synthetic data from a previously validated in silico model of

cardiovascular dynamics. The study population corresponded to an extensive range of cardiac

and arterial systemic conditions. The regression results showed that cuff pressure in conjunc-

tion with systolic time intervals (STIs) achieved a low test error and can capture the LV Ees

value with sufficient accuracy. The present work is in line with previous efforts towards the

non-invasive estimation of Ees using easily obtained single-beat non-invasive measurements.

In our previous study [41], we demonstrated that the non-invasive estimation of Ees can be

achieved when arm cuff pressure, carotid-femoral pulse wave velocity (cfPWV), and EF are

used as inputs to a regressor. Conventionally, EF is often used to assess LV systolic function and

can be measured using different cardiac imaging techniques, including magnetic resonance

imaging (MRI), the Simpson’s method, speckle tracking strains, etc. However, these imaging
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Figure 5.3 – Comparison between the estimated Ees values and the reference Ees for the XGBEes

M1 model. Scatterplot and Bland–Altman plot between the values of Ees derived from the
model and the real Ees . The solid line of the scatterplot represents equality. In Bland–Altman
plot, limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by
the two horizontal dashed lines. Adapted from [34].

modalities are tedious and require a highly trained technician. To facilitate the assessment

of cardiac performance, several studies have focused on the use of STIs which can be conve-

niently obtained via Pulse Doppler echocardiography [14; 15; 42]. Motivated by this concept,

we chose to reformulate the regression pipeline for the estimation of Ees and replace EF with

simple systolic timing parameters. A strong argument reinforcing our methodology arrives

from the fact that interpretation of EF is limited when preload and afterload are not known

[12].

The XGB model achieved high accuracy in the estimated Ees with r = 0.92. In 91 % of the

total cases, the average difference between the non-invasive Ees and the reference Ees was

reported to be lower than 0.50 mmHg/mL. Given that, for a normal heart, Ees lies within the

ranges of [1.5–3.5] mmHg/mL, while for dilated hearts and hypertrophied hearts is near 1

mmHg/mL and 4 mmHg/mL, respectively [4; 9], such an error should allow for reasonably

accurate assessment of systolic function in normal and pathological hearts.

Furthermore, based on the learning curve (Figure 5.2), the training error was reported to be
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Figure 5.4 – Comparison between the estimated and the reference Ees data for the XGBEes M2
model. Scatterplot and Bland–Altman plot between the values of Ees derived from the model
and the real Ees . The solid line of the scatterplot represents equality. In Bland–Altman plot,
limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by the
two horizontal dashed lines. Adapted from [34].

low, and, hence, the training data are fitted well by the estimated model (low bias). The small

gap between the two curves indicated a low variance. The learning curve well predicted a low

RMSE close to 0.29 mmHg/mL for the training data size equal to or larger than 4,000. Based

on this learning curve, we can deduce that our particular predictive model needs a training

dataset of 4,000 to reach an error of 0.29 mmHg/mL. These findings could be utilized as a

starting reference point for future studies that develop similar estimators.

The individual time points, i.e. ted (early time point of isovolumic contraction), tad (ending

time point of isovolumic contraction), and tes (end-systolic time point), were incorporated in

the input to enhance the performance of the model. In the spirit of completeness, we further

investigated the change in the accuracy of the predictive model when the latter time points

were not considered as input features. In that case, the XGB model predicted Ees achieving an

RMSE equal to 0.50 mmHg/mL and a correlation coefficient of 0.74. The feature importances

were re-ranked as follows: PEP: 0.555, brDBP: 0.154, brSBP: 0.103, HR: 0.101, and ET: 0.087.

Given the deterioration in the accuracy, we chose to keep the aforementioned time points

(given that they are available when PEP and ET are measured) in the input vector in order to
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Figure 5.5 – Comparison between the estimated and the reference Ees data for the XGBEes M3
model. Scatterplot and Bland–Altman plot between the values of Ees derived from the model
and the real Ees . The solid line of the scatterplot represents equality. In Bland–Altman plot,
limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by the
two horizontal dashed lines. Adapted from [34].

maximize our model’s performance.

In order to further evaluate the robustness of our models, we quantified the effect that mea-

surement errors might have on the Ees estimates. Especially, we performed the regression

analysis while introducing artificial noise to the STIs and the brachial pressure recordings. An

erroneous measurement of the STIs appeared to have a greater impact on the Ees estimation

compared to an error in the brachial blood pressure features. Overall, the sensitivity analysis

on errors in the input features demonstrated that estimated Ees values were considerably

affected by random errors in the systolic timing features (namely, ted , tad , tes , PEP, and ET).

In contrast, the overall regression performance was altered only slightly when random noise

corrupted brSBP and brDBP without significantly affecting the accuracy of the estimated Ees

values. This can be further explained if we consider the permutation feature importances

for our model; the timing intervals and, in particular, ted and tes held the first places in the

ranking (RMSE would increase at least by 1.4 mmHg/mL after permutating one of those two

features).
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Figure 5.6 – Comparison between the estimated and the reference Vd data for the XGBV d M3
model. Scatterplot and Bland–Altman plot between the values of Vd derived from the model
and the real Vd . The solid line of the scatterplot represents equality. In Bland–Altman plot,
limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by the
two horizontal dashed lines. Adapted from [34].

Based on the permutation feature importances, the time points ted and tes were the most

significant contributors to the precise estimation of Ees . If permutation of a feature leads to a

predictive model with insufficient prediction capacity (high errors), then the information pro-

vided by this feature is significant and the corresponding feature is considered as important.

The threshold for an error to indicate poor prediction is dependent on the problem under

consideration. In the present study, the error threshold for a precise estimation was set to be

lower than 0.50 mmHg/mL, and, therefore, all the features with permutation importances

leading to errors higher than the threshold were considered as largely important. The discrep-

ancies in the features’ ranking between the two approaches for calculating the importance

level can be explained by the fact that the one is based on the training process, while the other

one relies on the predictions on the testing dataset. Moreover, the feature importance method

by XGB favors features that have high cardinality. In our dataset, all PEP values were unique

for all the 4,645 data instances, and this might encourage the algorithm to consider it as the

most important feature. It is recommended that interpretation of the importances is done in a

combinatorial manner, so that a more complete overview is provided using different insights

and aspects. Yet, PEP had a critical contribution using both concepts. The high correlation
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Table 5.6 – Regression statistics between the model-predicted Ees and the reference Ees when
artificial noise is considered.

Model Slope
Intercept

[mmHg/mL]
r P-value

nRMSE
[%]

MAE
[mmHg/mL]

XGBEes M1
(noise-free)

0.82 0.57 0.92 <0.0001 9.15 0.24

XGBEes M1
(± 10 % noise in STIs)

0.72 0.87 0.84 <0.0001 12.51 0.33

XGBEes M1
(± 20 % noise in STIs)

0.59 1.26 0.74 <0.0001 15.26 0.40

XGBEes M1
(± 30 % noise in STIs)

0.54 1.40 0.68 <0.0001 16.78 0.44

XGBEes M1
(± 10 % noise in BP)

0.83 0.53 0.92 <0.0001 9.15 0.24

XGBEes M1
(± 20 % noise in BP)

0.81 0.58 0.91 <0.0001 9.46 0.24

XGBEes M1
(± 30 % noise in BP)

0.81 0.57 0.91 <0.0001 9.76 0.25

between PEP and LV function has been also demonstrated by previous studies [42]. Finally,

the important contribution of brDBP (4th higher increase in error) can be explained by the

fact that brDBP is strongly related to the mean arterial blood pressure, which indicates the

pressure against which the heart pumps.

Clinical application of the proposed method

Systolic time intervals can be easily and precisely measured in the clinical practice and may be

used for detecting alterations in LV systolic function [16]. The correlation between these STIs

measurements and conventional LV function parameters has been emphasized in numerous

previous studies [42] paving the way to further explore the potential in using more complicated

nonlinear machine learning approaches.

From a wider perspective, the incorporation of STIs values as features to approximate Ees

has been a promising research direction. Several researchers have demonstrated the ability

in acquiring these STIs measurements from more simplified modalities including electro-

cardiography (ECG), phonocardiography (PCG), or seismocardiography (SCG) [43; 44]. Such

methods provided unobtrusive detection of cardiac time intervals and offer the potential to be

integrated into wearable devices. Interestingly, PEP and ET could be very easily obtained using

ECG and a precise electronic stethoscope. More specifically, the initiation of the PEP interval

is placed at the initial point of the Q-wave (point 1, Figure 5.7). In addition, an electronic

stethoscope able to capture the time intervals in the scale of milliseconds would allow us to

determine the moment of the aortic valve closure (point 2, Figure 5). Now, if we set a new time
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Figure 5.7 – Representation of the aortic pressure, the left ventricular pressure, the ECG
including the timing components of pre-ejection period (PEP), ejection time (ET), and the
newly introduced Q-aoClos interval. The Q-aoClos interval is the time period from the initial
trace of Q-wave (point 1) (as measured via ECG) until the closure of the aortic valve (point 2)
(as recorded via a phonographic device). Adapted from [34].

interval which is the sum of PEP and ET (Q-aoClos interval, Figure 5.7), we can measure the

exact duration of the latter using ECG and stethoscope alone. The ECG signal could indicate

the initiation of Q-wave, while phonocardiography would allow us to detect the closure of the

aortic valve. To test this hypothesis, we performed the regression analysis using as inputs only

the arm cuff pressure, the Q-aoClos interval, namely, the summation of PEP and ET, the time

point at the beginning of Q-wave (time 1), and the time point at the closure of the aortic valve

(point 2). Our results indicated that Ees could be effectively estimated achieving an nRMSE

and Pearson’s correlation coefficient equal to 10.37 % and 0.89, respectively, wheareas limits

of agreement were ±0.67 mmHg/mL and bias was zero. In that case, the selected hyperpa-

rameters were learning_rate = 0.05, max_depth = 3, n_estimators = 1,250. This finding creates

a rather promising proof-of-evidence towards the non-invasive estimation of Ees reducing

the complexity and the cost of the technique for acquiring the necessary measurements. The
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proposed methodological concept could be easily integrated in a medical device such as a

smart stethoscope.

Prior work on the Ees estimation

Several methods have been proposed for the Ees estimation using non-invasive single-beat

measurements. First, Chen et al. [9] proposed a simple equation for estimating Ees from

arm cuff pressure, SV, and EF. Their proposed method incorporates an estimated normalized

ventricular elastance at arterial end-diastole which was derived from regression on previously

recorded studies. The authors achieved accurate estimations with differences between esti-

mated and real values equal to 0.43 ± 0.50 mmHg/mL and a high correlation of 0.91. Here, we

decided, however, to simplify our method by replacing the measurements of the stroke volume

and ejection fraction with the more accurately obtained pre-ejection period and ejection time

intervals. In addition, the calculation of EF as assessed by echocardiography can be rather

sensitive to errors and derived approximately. Removal of EF from our calculation may reduce

the error imposed by such an approximation.

Moreover, Shishido et al. [8] suggested the estimation of Ees from pressure values, systolic time

intervals, and stroke volume. Their analysis relies on the approximation of the time-varying

elastance curve by two linear functions corresponding to the isovolumic contraction phase

and the ejection phase. The slope ratio of these functions is calculated and used for estimating

Ees by the employment of a simple equation. Their model provided reliable predictions of Ees

in anesthetized dogs with r = 0.93 and SEE = 2.10 mmHg/mL. In accordance with our findings,

this methodology evidences the utility of systolic time intervals on the estimation of Ees . A

limitation of their study pertains to the fact that the authors developed their model using the

same population which was used for the model’s testing rather than an independent group.

Recently, Pagoulatou et al. [10] proposed and validated a novel method for non-invasively

estimating Ees based on sphygmomanometric pressure measurements and standard echocar-

diographic examination, comprising the measurement of aortic flow and ejection fraction.

Their method is based on the adjustment of the aforementioned model of the cardiovascular

system to patient-specific standards and subsequently allows for the derivation of Ees and Vd

via an inverse model-fitting approach. Invasive validation of their technique on 19 patients

yielded accurate estimates of Ees [r = 0.89, nRMSE = 9 %, bias = -0.13 mmHg/mL with limits

of agreement (-0.9, 0.6) mmHg/mL], while it was demonstrated that the method is robust to

measurement noise.

Limitations

This study has potential limitations that need to be acknowledged. The major limitation of

the present study is the use of synthetic data and not real in vivo recordings. Nevertheless,
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synthetic data can sufficiently simulate the content of the real clinical measurements, while

they allow for controlling the distribution of rare but relevant conditions or events. In addition,

the in silico model that was used for the data generation has been thoroughly validated

against in vivo data and provides realistic representations of the physiological signals. Another

limitation pertains to the fact that PEP and ET used for the training/testing scheme were

extracted from the elastance curve, albeit this framework has been designed to use only

echocardiographic measures. This approach was selected due to the lack of ECG information,

given that cardiac electrical events are not yet included in our in silico model. Sensitivity

analysis was performed in order to examine the model’s performance with respect to over-

and underestimation of these two features. Furthermore, our proposed method does not

provide the entire ESPVR, given that the inputs do not provide adequate information to predict

Vd . However, we observed that when the SV and EF were included in the input vector, our

method is able to estimate Vd with an nRMSE = 9.12 % and r = 0.93. Finally, the current dataset

was created using the mathematical model of a healthy individual free of pathology. Hence,

implementation of the method is limited in cases of aortic valve stenosis, regurgitation, or

other valve pathologies, where the relationship between the peripheral pressure and the STIs is

modified. Further investigation towards this direction will be performed in our future studies.

Conclusion

At large, this study provided evidence that accurate estimates of Ees could be yielded from

pressure data and contractility-related timing parameters using a data-driven approach. Based

on our findings, we conclude that data-driven approaches might be valuable for estimating

Ees . The STIs appeared to be a promising source of information for assessing Ees and their

usefulness should be emphasized. At large, our results were found to be in good agreement

with the actual Ees values over an extensive range of LV contractility values and loading

conditions. The proposed methodological concept could be easily transferred to the bedside

and potentially facilitate the clinical use of Ees for monitoring the contractile state of the heart

in the real-life setting.
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Abstract

Determination of left ventricular (LV) end-systolic elastance (Ees) is of utmost importance for

assessing the cardiac systolic function and hemodynamical state in humans. Yet, the clinical

use of Ees is not established due to the invasive nature and high costs of the existing measuring

techniques. The objective of this study is to introduce a method to assess cardiac contractility,

using as a sole measurement an arterial blood pressure (BP) waveform. Particularly, we aim to

provide evidence on the potential in using the morphology of the brachial BP waveform and its

time derivative for predicting LV Ees via convolution neural networks (CNNs). The requirement

of a broad training dataset is addressed by the use of an in silico dataset (n = 3,748) which

is generated by a validated one-dimensional mathematical model of the cardiovasculature.

We evaluated two CNN configurations: (i) a one-channel CNN (CNN1) with only the raw

brachial BP signal as an input, and (ii) a two-channel CNN (CNN2) using as inputs both the

brachial BP wave and its time derivative. Accurate predictions were yielded using both CNN

configurations. For CNN1, Pearson’s correlation coefficient (r ) and RMSE were equal to 0.86

and 0.27 mmHg/mL, respectively. The performance was found to be greatly improved for

CNN2 (r = 0.97 and RMSE = 0.13 mmHg/mL). Moreover, all absolute errors from CNN2 were
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found to be less than 0.5 mmHg/mL. Importantly, the brachial BP wave appeared to be a

promising source of information for estimating Ees . Predictions were found to be in good

agreement with the reference Ees values over an extensive range of LV contractility values and

loading conditions. Therefore, the proposed methodology could be easily transferred to the

bedside and potentially facilitate the clinical use of Ees for monitoring the contractile state of

the heart in the real-life setting.
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6.1. Introduction

6.1 Introduction

Left ventricular (LV) contractility is a major determinant of the cardiac systolic function,

ventricular-arterial interaction [1; 2] as well as hemodynamical state [3]. Currently, the

gold standard method for evaluating LV systolic function is the invasive measurement of

LV pressure-volume loops under varying load conditions, whereby the end-systolic pressure-

volume relation (ESPVR) is derived [1; 4; 2]. The ESPVR, described by its slope, i.e. the

end-systolic elastance (Ees), and its intercept, i.e. the dead volume (Vd ), has been proved to be

less load sensitive than other indices of ventricular contractility [5]. For an increased value of

Ees , the left ventricle is able to eject a higher blood volume against the same afterload, which

is indicative of increased contractility [4]. Evaluation of Ees is of utmost significance in clinical

practice. The age-induced vascular stiffening [6] and hypertension [7] are strongly associated

to the stiffening of the left ventricle, which is followed by an increase in Ees . Furthermore,

continuous and reliable monitoring of Ees is critical in patients with heart failure or septic

cardiomyopathy [3]. Yet, the bedside use of Ees is not established due to the invasive nature

and high costs of the existing measuring techniques [8]. Such limitations create an inescapable

need for a new method that will permit the Ees derivation in a fast, easy, non-invasive manner

using easily obtained measurements (such as applanation tonometry).

Arterial pulse waves contain a wealth of information for assessing the cardiovascular health

in humans. Importantly, the morphology of the arterial pulse is affected by the mechanical

and structural properties of the heart and the arterial network [9]. Clinical studies have

investigated the arterial hemodynamics in normal and diseased human hearts under varying

loading conditions and inotropic states, showing that the shape of the arterial BP waveform

is highly sensitive to changes in LV Ees [10]. Interestingly, Ostadal et al. have presented data

verifying that continuous monitoring of dP/dtmax (where BP time-signal is measured via

arterial line) enables the assessment of the LV function in patients with acute heart failure

[11]. In particular, the dP/dtmax can be calculated from a BP waveform, obtained either

minimally invasively from a peripheral arterial line [12; 13; 14] or non-invasively using, for

instance, a tonometry-based device [15]. Nonetheless, there is no current study to investigate

the importance of exploiting the entire BP waveform (time sequence and its time derivative)

for further facilitating the non-invasive monitoring of LV contractility.

Recent advancements in the field of artificial intelligence have introduced novel methods

towards the predictive modelling for clinical use, creating a promising opportunity for further

methodological advancements [16]. Yet, only few studies have leveraged machine learning

and deep learning techniques for cardiac monitoring [17; 18; 19]. Motivated by the evidence

provided by the current state of knowledge, the present study aims to explore the opportunity

in using the entire brachial BP wave for predicting LV Ees via convolution neural networks

(CNNs). The requirement of a broad training dataset is addressed by the use of an in silico

cohort, which was generated by a validated one-dimensional (1-D) cardiovascular simulator
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[20]. In silico models permit studying and understanding of various pathophysiological

conditions, whereas they provide additional hemodynamic insights, which would be difficult

to obtain in vivo. Concurrently, accurate measurement of Ees is challenging in a human cohort

and thus a preliminary in silico verification of the proposed concept would benefit the future

in vivo validation. Our aim was to propose an original conceptual methodology for continuous

monitoring of the cardiac performance and to evaluate its feasibility in silico. The result of the

in silico experiments can be considered as preliminary implications for the accuracy of the

predictions under ideal conditions.

6.2 Methods & materials

Brief description of the cardiovascular simulator

We adopted a 1-D mathematical model of the cardiovasculature (Figure 6.1) which has been

previously described in [20]. The arterial tree network includes all major vessels of the systemic

circulation, as well as the cerebral circulation and the coronary circulation. The governing

equations of the model are derived by integrating the longitudinal momentum and continuity

of the Navier-Stokes equations over the arterial cross-section. The model solves the governing

equations with proper boundary conditions and provides flow and pressure at every arterial

location of the network. Every arterial segment is modelled as a long, tapered tube, and

its compliance is defined as a non-linear function of pressure and location [21]. Terminal

vessels are coupled with three-element Windkessel models [22] and intimal shear is modeled

following the Witzig-Womersley theory [23]. At the proximal end (at the root of the aorta), the

arterial tree is coupled with a time-varying elastance model (VEM) of the left ventricle [1; 4].

Specifically, VEM simulates the relationship between the LV pressure (PLV ) and LV volume

(VLV ), namely:

E(t ) = PLV

VLV −Vd
(6.1)

where Vd is the LV dead volume. Table 6.1 summarizes all the inputs and outputs of the 1-D

cardiovascular model. A detailed description of the 1-D simulator can be found in the original

publications [20; 24]).

Description of the in silico dataset

For generating various hemodynamic cases, the 1-D cardiovascular simulator ran using differ-

ent combinations of arbitrary input model parameters. The distributions of the input model

parameters were based on literature data, by identifying the normal values and ranges of the

parameters. Given that the literature data are only provided in terms of mean and standard de-

viation or/and minimum and maximum values, the exact distribution of each parameter was
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Table 6.1 – List of the inputs and outputs of the 1-D cardiovascular model.

Variable
notation

Value

Inputs
End-systolic elastance [mmHg/mL] Ees 2.6
End-diastolic elastance [mmHg/mL] Eed 0.08
Filling pressure [mmHg] Pfill 14
Time of maximal elastance [ms] tes 340
Heart rate [bpm] HR 75
Dead volume [mL] Vd 15
Venous resistance [mmHg.s/mL] Rven 0.003
Arterial distensibility [10−3/mmHg] C (no_segments)x1 vector

Terminal compliances [mL/mmHg] Ct
(no_terminal_segments)x1

vector

Peripheral resistances [mmHg.s/mL] Rt
(no_terminal_segments)x1

vector
Arterial inlet diameter [cm] din (no_segments)x1 vector
Arterial outlet diameter [cm] dout (no_segments)x1 vector
Arterial length [cm] len (no_segments)x1 vector
Blood density [kg/m3] ρ 1050
Blood viscosity [Pa.s] µ 0.004

Outputs

Pressure waves [mmHg] pressures
(no_segments)x(no_time_points)

vector

Flow waves [mL/s] flows
(no_segments)x(no_time_points)

vector
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Figure 6.1 – Schematic representation of the model of systemic circulation developed by [20].
(A) Main systemic arterial tree. (B) Detail of the aortic arch and the coronary network. (C)
Detail of the principal abdominal aorta branches. (D) Blown-up schematic of the detailed
cerebral arterial tree, which is connected via the carotids (segments 5 and 15) and the vertebrals
(segments 6 and 20) to the main arterial tree shown in (A). Adapted from [20].

unknown. In addition, varying the parameters while accounting for dependencies between

parameters was not feasible due to the lack of sufficient data to inform inter-dependencies.

Therefore, the sampling was selected to be random Gaussian.

The selected distributions of the input model parameters are summarized in Table 6.2. The

parameters of arterial distensibility and terminal compliance were altered simultaneously,

while nonuniform aortic stiffening was considered for the elderly and hypertensive virtual

subjects, following the methodology described in our previous work [25; 26]. Peripheral

resistances were modified uniformly in order to achieve the specific value of total peripheral

resistance in the selected range.

Furthermore, the geometry of the arterial network (namely length, inlet diameter, and outlet

diameter of the arterial segments) was modified to simulate different body types by adapting

the length and the diameter of all arterial vessels. The reference state of the arterial tree

model corresponds to an individual with a height equal to 180 cm. Different heights were

simulated via multiplication of the reference arterial lengths with a scaling factor (uniform

adaptation). As per the arterial diameters, previous studies have associated the variation of the

aortic diameter with respect to age, gender, weight, and height [27]. However, there exist no

sufficient available data to demonstrate the diameter variation of multiple arterial segments
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Table 6.2 – Selected distributions of the model’s input parameters based on the literature

Parameter mean±SD Reference
End-systolic elastance [mmHg/mL] 2.3±1 [6]
End-diastolic elastance [mmHg/mL] 0.2±0.11 [6]
Filling pressure [mmHg] 15±5.4 [29]
Time of maximal elastance [ms] 327±39 [30]
Heart rate [bpm] 63.7±9.5 [31]
Aortic distensibility [10−3/mmHg] 5.86±3.23 [32]
Total peripheral resistance [mmHg.s/mL] 1.28±0.31 [31]
Aortic diameter [cm] 33.2±4.1 [27]
Height [cm] 169.2±8.9 [31]

with respect to an individual’s demographic profile. As a result, we modified all arterial

segments following a uniform distribution based on the variation of the aortic diameter.

In order to eliminate the likelihood of creating unrealistic hemodynamical profiles, we exam-

ined the physiological validity of every case and discarded any implausible generated virtual

subject. The physiological validity of each subject was evaluated by comparing the simulated

brachial and aortic BP values [i.e. SBP, DBP, MAP, and pulse pressure (PP)] to the reference

values reported in the literature [28]. A subject was discarded from the data if any of the BP

values did not lie within the range of mean ± 2.807SD (assuming 99.5 % confidence intervals).

For deriving the dataset, we ran the model 10,000 times to generate 10,000 cases. Out of the

10,000 cases, 3,748 samples were accepted after applying the above filtering criteria.

Data pre-processing

The brachial BP waveform was derived from the left simulated brachial artery. The train/-

validation/test split was set to be 60 % (2290 cases)/20 % (764 cases)/20 % (764 cases). By

computing the MSE with decreasing training size, we noticed that similar results can also be

achieved with fewer samples (e.g. 1603) and, therefore, we may deduce that a training size of

2290 is sufficient.

The BP waveforms were up-sampled so that each wave consists of 200 samples. This selection

allowed us to ensure a sampling frequency higher than the 100-Hz threshold suggested for the

pulse wave velocity techniques [33] (which require substantially high signal resolution). This

value was considered as a fair trade-off between computational time and high signal fidelity.

Subsequently, the data were normalized using the MinMaxScaler() function from Sklearn

library. The Min-max normalization method is a standard normalization approach which

guarantees that all features will be on the same scale, e.g. between zero and one. Other meth-

ods, such as the z-score or feature clipping, are preferable when there are several outliers in
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the data. Nonetheless, given that the filtering of the in silico population essentially disregards

the outliers, the Min-max method may be sufficient for our learning algorithm.

Convolution neural networks

We evaluated two model configurations with respect to the inputs:

1. One-channel CNN (CNN1): Using as a sole input the entire BP waveform.

2. Two-channels CNN (CNN2): Using as inputs the entire BP waveform and its time deriva-

tive.

The time derivative of the BP wave was calculated as the slope of the wave using the central

differences approach:

f ′[n] = f [n −1]− f [n +1]

2τ
(6.2)

where f [n] is the BP function at the nth time point and τ is the time interval between the two

pressure values. The τ is computed as the entire heart cycle duration divided by the number

of recorded pressure values (200 samples).

The CNN models were created using PyTorch library [34]. In particular, the networks were

composed of four 1-D Convolutional layers, each of them followed by an activation ReLU

layer. Following the four convolutional layers intercalated with the activation ReLU layers,

three additional functions were used to yield the final output results. Firstly, we employed a

MaxPooling layer which uses the MaxPool1d function from PyTorch framework. The MaxPool-

ing function permits to progressively reduce the spatial size of the data for keeping only the

maximum of each window while striding (kernel_size = 3, stride = 2). The MaxPooling layer was

followed by a Flatten function which flattened the output of the convolutional layers to create

a single long feature vector. A Linear layer was finally applied on the output of the Flatten

function, providing the final prediction of the Ees value. The functions are further described in

the torch.nn module (Available at: https://pytorch.org/docs/stable/generated/torch.nn).

In order to generate our different CNN models, we made use of PyTorch Conv1D() function

with different values for in_channels and out_channels parameters. The input data size was

200 for CNN1 and 200x2 for CNN2. In addition, the kernel size of each filter was set to 5, which

is a popular choice in the state of the art. Importantly, we opted for an odd-sized filter, as all

the previous layer pixels would be symmetrically around the output pixel. Selecting even-sized

kernel filters would require us to account for distortions across the layers. Therefore, odd-sized

kernel filters were preferred for implementation simplicity. The value of stride and padding

was kept constant throughout the models and equal to 2.
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Table 6.3 – Number of filters per each convolutional layer for the two CNN models.

Number of filters per channel
Total number of filters

(no_filters x no_input_channels)
CNN1

Layer 1 2 2
Layer 2 4 8
Layer 3 8 32
Layer 4 16 128

CNN2

Layer 1 8 16
Layer 2 16 128
Layer 3 18 288
Layer 4 24 432

Each of the CNN model with each own input layer was characterized by the respective number

of channels. Figure 6.2 illustrates the number of inputs/outputs between each convolutional

layer, and the architecture of the two models. The number of filters per channel on each

convolutional layer is presented in Table 6.3. The number of filters was optimized by an “error

and trial” approach, and the optimal values were selected for the specific type of data.

Figure 6.2 – Representation of the architecture of the CNN model configurations. The two
CNN models are shown in different colors (CNN1 in blue and CNN2 in green) and the number
of the in_channels and out_channels for each convolutional layer is reported. Adapted from
[35].

The CNN parameters, namely the weights and biases, were optimized upon training on 60 %

of the dataset. The resulting model was then applied to the validation set (20 % of the entire

dataset) in order to assess the loss and the accuracy in the output. On this validation set, we

performed tuning for two hyperparameters, namely the batch_size and the number of epochs.

This allowed us to ensure that no overfitting occurred. The value of learning_rate was set equal

to 0.001 and tuning was performed using the Adam optimizer [36] for batch_size values {32, 64,

128} and epochs values within the range of [1, 400]. Adam is a versatile optimization method.
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Given the satisfactory performance of our trained models, we did not consider evaluating

additional algorithms.

The trained CNN models using the tuned hyperparameters along with the weights and biases

values were applied to the test set (remaining 20 % of the data) in order to evaluate the

predictive performance of the models. The tuning process was conducted with regard to the

mean square error (MSE) loss function. The MSE loss function is considered as a fair selection

under the inference framework of maximum likelihood when the distribution of the target

variable is Gaussian-like (as in the present study). In addition, it is preferable in comparison

to other methods which might be more computationally expensive (e.g. the mean absolute

error method which uses modulus operator function) or might impose increased training

requirements (e.g. the uber loss which involves the optimization of the hyperparameter δ in

order to maximize model accuracy).

Sensitivity to errors

In order to investigate the impact of potential errors or adverse effects in the measurements of

the BP signal, the test data were corrupted with artificial noise. White gaussian noise (WGN)

was added to the BP for each subject using the awgn() from MATLAB (The Math Works, Inc.

MATLAB. Version 2020b). The performance of the two CNN models was tested for five values

of signal-to-noise ratio (SNR), i.e. 70, 60, 50, 40, and 30 dB. The metrics of agreement and

accuracy were reported for each level of noise. Examples of the noise effect on the BP wave are

depicted in Figure 6.3.

Statistical analysis

The performance of the models in terms of agreement, bias and accuracy was evaluated

with the use of the Pearson’s correlation coefficient (r ), the normalized root mean square

error (nRMSE), and the Bland-Altman analysis [37]. The computed nRMSE was based on

the difference between the minimum and maximum values of the dependent variable. A

P-value below 0.05 was considered as statistically significant. The statistical analysis was

performed in Python (Python Software Foundation, Python Language Reference, version 3.6.8,

Available at http://www.python.org).

6.3 Results

Table 6.4 presents the cardiac and vascular characteristics of the study population (3,748

cases). The CNN-derived Ees were compared to the reference Ees values, which were provided

by the 1-D cardiovascular model.
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Figure 6.3 – Brachial blood pressure waves after adding artificial noise. The noisy data are
presented in red solid lines and the original noise-free data in black dashed lines. Adapted
from [35].

Comparison between the CNN-predicted Ees and the reference Ees values

Table 6.5 summarizes the regression metrics of the statistical comparisons between the non-

invasive Ees estimates and the reference Ees . The Bland-Altman analysis indicated a low bias

for the estimated Ees . The limits of agreement (LoA) between the estimated and reference
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Table 6.4 – Summary of the virtual study cohort (n = 3,748) cardiovascular characteristics.

Parameter
Value
(n = 3,748)

End-systolic elastance [mmHg/mL] 2.4±0.52
End-diastolic elastance [mmHg/mL] 0.16±0.04
Filling pressure [mmHg] 16.54±3.19
Time of maximal elastance [ms] 328±23
Heart rate [bpm] 75.96±8.25
Ejection fraction [%] 47.38±6.06
Stroke volume [mL] 56.68±12.75
Aortic systolic blood pressure [mmHg] 110.62±23.13
Aortic diastolic blood pressure [mmHg] 80.93±14.79
Aortic pulse pressure [mmHg] 29.70±13.04
Mean arterial pressure [mmHg] 95.71±18.40
Brachial systolic blood pressure [mmHg] 121.64±24.07
Brachial diastolic blood pressure [mmHg] 78.71±14.44
Brachial pulse pressure [mmHg] 42.93±15.05
Pulse pressure amplification 1.49±0.11
Total peripheral resistance [mmHg.s/mL] 1.36±0.17
Total arterial compliance [mL/mmHg] 1.27±0.41

Ees (within which 95 % of errors are expected to lie) were found to be (-0.55, 0.49) mmHg/mL

and (-0.26, 0.23) mmHg/mL, for CNN1 and CNN2, respectively. Figures 6.4 and 6.5 illustrate

the scatterplots and the Bland-Altman plots of the estimated Ees against the actual Ees for the

two CNNs. The absolute difference between the estimated Ees and the real Ees values did not

exceed 0.5 mmHg/mL in 95 % of the total cases for CNN1, while all errors were found to be

smaller than 0.5 mmHg/mL for CNN2. Furthermore, for the CNN2 configuration, the absolute

error was less than 0.05 mmHg/mL in 61 % of the test set.

The computational time required for training the models was 110 s and 115 s for CNN1 and

CNN2, respectively. The time required to yield the predictions for the test set was reported to

be less than 1 s.

Sensitivity to errors

The impact of potential errors or adverse effects in the measurements of the BP signal was

quantified for the two CNN configurations under various noise levels (Table 6.5). The CNN1

model appeared to be robust for an SNR value equal or larger than 40 dB (nRMSE < 15 %).

On the other hand, the performance of CNN2 remained unaffected for SNR ≥ 60 dB (nRMSE

was doubled for higher values of SNR). However, when the SNR reduced to 40 dB or less, the

correlation and agreement were significantly deteriorated (r < 0.6 and nRMSE > 30 %).
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Table 6.5 – Regression statistics between the model-predicted and the reference elastance
values.
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Figure 6.4 – Comparison between the predicted Ees and the reference Ees data for CNN1. Scat-
terplots and Bland–Altman plots between the CNN-predicted Ees and the reference Ees . The
solid line of the scatterplots represents equality. In Bland–Altman plots, limits of agreement
(LoA), within which 95 % of errors are expected to lie, are defined by the two horizontal dashed
lines. Adapted from [35].

6.4 Discussion

In the present study, we suggested that the prediction of the cardiac contractility index of Ees

is feasible using a single brachial BP waveform. The proposed concept was appraised using an

in silico dataset which was generated using a 1-D mathematical model of the cardiovascular

system [20]. The results showed that the brachial BP wave may be valuable for the characteri-

zation of Ees . In particular, the CNN configuration combining the brachial BP wave and its

time derivative provided higher precision than the precision achieved by the CNN that used

only the BP signal (correlation was increased from 0.86 to 0.97).

Arterial pulse wave contains a wealth of physiological information as its morphology is influ-

enced by the heart and the systemic circulation [9]. Quantities such as stroke volume as well

as the arterial stiffness and wave reflections have a prominent impact on the arterial pulse.

Furthermore, pathological changes affect the arterial pulse in different ways, including the

amplitude, shape, and frequency [38]. As a result, arterial pulse waves provide abundant and

reliable information about the cardiovascular function. Importantly, physiological parameters
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Figure 6.5 – Comparison between the predicted Ees and the reference Ees data for CNN2. Scat-
terplots and Bland–Altman plots between the CNN-predicted Ees and the reference Ees . The
solid line of the scatterplots represents equality. In Bland–Altman plots, limits of agreement
(LoA), within which 95 % of errors are expected to lie, are defined by the two horizontal dashed
lines. Adapted from [35].

derived from the arterial pulse can be useful for diagnosis and clinical decision making. Arte-

rial waves can be easily measured using non-invasive clinical devices, such as oscillometric or

tonometric BP monitors. In addition, arterial waves from photoplethysmography (PPG) or

other signals including the electrocardiogram (ECG), are also routinely monitored by wearable

devices (e.g. smartwatches and fitness wristbands). Hence, the high accessibility of the arterial

pulse waves in both clinical settings and daily life encourages further exploitation of their

insights with respect to the cardiovascular function.

With the increasing availability of clinical data, signals, and images sourced from various

avenues of medicine and healthcare, the application of artificial intelligence for analysis and

interpretation of medical data grows rapidly. The diagnosis of the cardiovascular disease

could benefit essentially from early prediction, prevention, and proactive management. Thus

artificial intelligence-based methodologies could essentially contribute towards this direction.

Deep learning offers a promising potential in exploring new methods for cardiac monitoring

by deciphering key information from arterial waveforms. Deep learning is a class of machine

learning algorithms that uses multiple layers to progressively extract higher-level features
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from the raw input. In this study, we leveraged this exact capacity of CNN models in order

to evaluate LV Ees from a single BP signal. Such potential can open new directives in digital

health and potentially suggest new markers for cardiac monitoring purposes.

Ensuring high fidelity in the signal acquisition constitutes a critical aspect for the accurate

estimation of Ees . Especially, caution should be paid in successfully capturing the waveform,

as the measurement may be prone to errors or adverse effects which can distort the relevant

information for the deep CNN prediction. In order to evaluate the effect of errors in the

morphology of the input brachial BP wave, we artificially introduced simulated noise. The

noise was applied only on the test set which was subsequently fed to the trained CNN models.

The sensitivity analysis showed that subtle distortion in the wave shape did not significantly

affect the accuracy of the CNN models. However, the performance was severely worsened

when the SNR approached 30 dB. The CNN1 was found to be more robust to measurement

noise when compared to the CNN2 whose estimation relies on both the pressure wave and its

time derivative. This might be explained by the sensitivity of the CNN2 to two input waves.

Specifically, the error may propagate through the derivative computation by directly altering

the two derivative factors (i.e. f[n-1] and f[n+1]) and, subsequently, influence to a greater

extent the deep CNN prediction.

Previous methods on the estimation of Ees rely mainly on non-invasive single-beat measure-

ments [39; 40; 41; 18]. These methods require the inclusion of cuff BP, stroke volume, ejection

fraction or other measurements. Especially, stroke volume and ejection fraction constitute

common measures of the LV systolic function and can be obtained via several cardiac imaging

modalities, such as the magnetic resonance imaging, and the Simpson’s method. However,

these imaging techniques are tedious and require a highly trained technician. In addition,

ejection fraction expresses the stroke volume as a fraction of end-diastolic volume (EDV), and,

therefore, correct interpretation of ejection fraction can be achieved only with the additional

knowledge of EDV. Simplification of the Ees approximation by using a sole BP wave recording

may facilitate cardiac monitoring while reducing costs and complexity for the clinicians and

the patients.

It is to be highlighted that this study aimed to address an unmet clinical need by proposing

a novel methodology, dissimilar to the existing state of the art. As a result, there was not

sufficient relevant literature to guide the CNN design and architecture for the research question

under investigation. In particular, there did not exist previously published studies that aimed

to address a similar problem and which could inform us about the selection of the model

functions and parameters. Therefore, we developed and suggested an original architecture

that fitted best in the specific type of data.
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Limitations

Several limitations of the present study need to be acknowledged. The current study was

entirely based on simulated data and thus the results should be considered as a preliminary

assessment of the theoretical concept of the proposed approach. While synthetic data can

mimic numerous properties of the real clinical data, they do not copy the original content

in an identical way. Future work should include the use of real clinical data that will finally

verify the application of the proposed method in the clinical setting. It is likely that the models

trained using the simulations are not capable for adequate predictions for real human data.

Nevertheless, in silico trained networks could be used in transfer learning as pre-trained

networks, which are subsequently fine tuned with clinical measurements. At this stage of our

research, we found it reasonable to start with an in silico validation of our research hypothesis,

instead of directly collecting measurements of Ees in humans. The cost and the complexity

of the Ees measurements would make it difficult to incorporate them in the current study. In

addition, the variance of the simulated EF data was reported to be low, while the average EF

was equal to 47 %. Such a data distribution represents more accurately a population with

heart problems. Our future in vivo studies will include a wider range of EF values, which will

account for both diseased and healthy populations. Finally, the evaluation of the proposed

framework was done using a single beat of each virtual subject. Next steps will also include

the in silico and the in vivo validation of a CNN method that uses multiple heart beats from

every participant. Hence, a closed-loop cardiovascular mathematical model may be adopted

for achieving this goal.

Conclusion

We showed that the use of the brachial BP waveform in conjunction with a deep CNN provided

accurate estimates of Ees . In particular, our findings indicated that the brachial BP wave may

be a promising source of information for assessing Ees , and its clinical utility should be empha-

sized. Our prediction algorithm achieved a satisfactory performance for an extensive range of

LV contractility values and loading conditions. Consequently, the proposed methodological

concept could be readily transferred to the bedside and potentially enhance the clinical use of

Ees for monitoring the contractile state of the heart in the real-life medical environment.
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Abstract

In vivo assessment of aortic characteristic impedance (Zao) and total arterial compliance (CT )

has been hampered by the need for invasive methods to access simultaneous recordings of

aortic pressure and flow, wall thickness, and cross-sectional area. In contrast, regional pulse

wave velocity (PWV) measurements are non-invasive and clinically available. In this study, we

present a non-invasive method for estimating Zao and CT using cuff pressure, carotid-femoral

PWV, and carotid-radial PWV. Regression analysis is employed for both Zao and CT . The

regression models are trained and tested using a pool of virtual subjects (n = 3,818) generated

from a previously validated in silico model. Predictions achieved an accuracy of 3.25 %, r =

0.98, and 3 %, r = 0.99, for Zao , and CT , respectively. The proposed approach constitutes a step

forward to the non-invasive screening of elastic vascular properties in humans by exploiting

easily obtained measurements. This study could introduce a valuable tool for assessing arterial

stiffness reducing the cost and the complexity of the required measuring techniques. Further

clinical studies are required to validate the method in vivo.
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7.1 Introduction

Aging and vascular pathologies lead to changes in the elastic properties and the hemodynamics

of the arterial network [1; 2; 3; 4]. These changes have been shown to be highly associated

with increased cardiovascular risk or mortality [2; 3]. In this respect, the assessment of the

arterial stiffness is increasingly used in the clinical evaluation of a patient. Proximal aortic

characteristic impedance (Zao) and total arterial compliance (CT ) are two powerful indices for

assessing the elastic properties of the proximal aorta and the entire arterial tree, respectively

[5; 1].

The impedance can be defined as the ratio of the pulsatile components of pressure and flow.

The impedance computed in the ascending aorta is defined as input impedance (Zi n), and

is a global systemic parameter, which encompasses all effects of wave travel and reflections

of the arterial part which is distal to the point of measurement. For a reflectionless system

Zi n reduces to Zao . The Zao is a cardinal parameter related to aortic stiffness and geometry.

Prior art has included invasive [6; 7; 8; 9; 10; 11; 12; 13; 14] and non-invasive [13; 15; 16]

techniques for estimating Zao in the frequency domain, whereby Zao is approximated as the

average Zi n in the mid-to-high frequency range, the underlying assumption being that in those

frequencies the effects of reflected waves are minimal. Other approaches have proposed time-

domain calculations of the Zao based on the early systolic part of pressure and flow waveforms

[17; 18; 19; 12], when reflections are considered negligible. All of the above frequency and time

domain methods require simultaneous recordings of pressure and flow in the aorta, which are

invasive (pressure) or inconvenient and expensive (flow).

CT is a major global elastic property of the arterial system, being a determinant of the cardiac

afterload, and has significant pathophysiological relevance [20; 21; 22; 23]. It quantifies the

capacity of the vessels to expand under internal pressure and store blood during systole

without excessive pressure rise. Importantly, CT is a significant determinant of central blood

pressure and decrease in CT is associated with hypertension. However, direct in vivo non-

invasive measurement of CT cannot be performed. Various methods have suggested the

indirect estimation of CT [18; 24; 25; 5] using simultaneous recordings of the proximal aortic

pressure and flow or cardiac output.

Precise measurement of the Zao and CT may increase understanding of arterial physiopathol-

ogy and provide additional clinical markers for cardiovascular risk assessment. Yet, despite the

significant body of research, the invasive nature or/and the complexity of the current methods

have limited their applicability in every day clinical practice, while other surrogates of regional

arterial stiffness have been used more often [5; 26]. Thus, a technique that offers a reliable,

non-invasive, fast, and simple-to-use estimation of Zao and CT is still highly desirable. In view

of this need, this study proposes a novel methodology to evaluate Zao and CT using machine

learning.
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In our previous work, we demonstrated that the combination of in silico data with machine

learning modelling allows for validating a methodology to predict aortic hemodynamics and

cardiac contractility [27]. This approach can be easily extended and adapted in the estimation

of different cardiovascular quantities and case studies, such the one introduced in this work.

In particular, this paper proposes a method which derives Zao and CT from brachial blood

pressure (cuff BP) and regional PWV measurements, while it does not require central pressure

or flow data. To assess the validity of this concept, the introduced methodology was tested

using an in silico population generated by a previously validated cardiovascular simulator.

The schematic representation of the regression pipeline is illustrated in Figure 7.1.

Figure 7.1 – Schematic representation of the training/testing pipeline for predicting aortic
characteristic impedance (Zao), and total arterial compliance (CT ). SBP, systolic blood pres-
sure; DBP, diastolic blood pressure; HR, heart rate; cfPWV, carotid-femoral pulse wave velocity;
crPWV, carotid-radial pulse wave velocity. Adapted from [28].

7.2 Methods & materials

In silico dataset

In this study, we used a synthetic dataset which was designed to simulate various hemody-

namical states. Different hemodynamic cases (n = 3,818), representing both normotensive

and hypertensive adults, were simulated by altering key cardiac and systemic parameters of a

previously validated in silico cardiovascular model. The mathematical model (Figure 7.2) has

been well described in the original publication [29]. Literature data are only presented in terms
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of mean and standard deviation or/and minimum and maximum values; thus, variation of

the model’s parameters was performed with random Gaussian sampling. Cardiac parameters

were modified and different cardiac output values were simulated. Arterial geometry (i.e.

arterial length and diameter) was modified to represent various arterial tree sizes and body

types [30; 31]. Total peripheral resistance and arterial compliance were altered according

to the literature [32; 33; 34]. To simulate older or hypertensive individuals, in some cases,

stiffening in the aorta was considered as nonuniform and more pronounced as described in

our previous works [35; 36]. For a given set of input parameters, the model provides analytical

solutions of the pressure and flow at every arterial segment. The physiological validity of each

subject was assessed by comparing the simulated brachial and aortic systolic BP (SBP), DBP,

MAP, and pulse pressure (PP) to the reference values reported in the previously published

data by McEniery [37] (normotensive cases) and Bordin Pelazza and Filho [38] (hypertensive

cases). A subject was removed from the dataset if any of the BP values lied out of the 99.5 %

confidence intervals (mean±2.807 SD).

Figure 7.2 – The 1-D cardiovascular model that was used for the data generation. Adapted
from [28].

Computation of Zao and CT

The characteristic impedance at the root of the ascending aorta was calculated analytically

using the area compliance and the geometry of the ascending aorta, namely:

Zao =
√
ρ

A

1

C A
(7.1)

where ρ is the blood density equal to 1,050 kg/m3, A is the cross-sectional area of the ascending
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aorta, and CA is the area compliance of the ascending aorta, respectively.

The CT was computed as the sum of volume compliance (ci ) of all the arterial segments

included in the 1-D model (n = 103) and the terminal compliances described by the terminal

Windkessel models, namely:

CT =
103∑

i
ci . (7.2)

Regional PWV and BP data

The carotid-femoral pulse wave velocity (cfPWV) and carotid-radial pulse wave velocity (cr-

PWV) were calculated by a foot-to-foot algorithm using the tangential method. Pulse transit

times were computed between the two arterial sites, namely the left carotid and left femoral

artery, and the left carotid and the left radial artery, respectively. Formally, the tangential

method uses the intersection point of two tangents on the arterial pressure wave, i.e. the

tangent passing through the systolic upstroke and the horizontal line passing through the min-

imum of the pressure wave as previously described [39]. The travel lengths were determined

by summation of the lengths of the arterial segments within the transmission paths. Next, the

value of each PWV was calculated by dividing the total travel length by the pulse transit time.

Brachial systolic (brSBP) and diastolic BP (brDBP) were derived from the pressure waveform

at the left brachial artery.

Regression Analysis

The simulated data, i.e. brSBP, brDBP, heart rate (HR), cfPWV, crPWV, Zao , and CT , were

organized in pairs (inputs: brSBP, brDBP, HR, cfPWV, crPWV, and outputs: Zao , CT ) and were

kept for the training/testing process. All the data were corrupted with artificial noise in

order to simulate potential measurement errors that often occur in the respective clinical

measurements. The noise allows for essentially harming the deterministic effect of the 1-D

computer model. Errors in measurements were simulated with a random distribution. In

particular, the error for each variable was randomly drawn from the range of [–15, 15] %

(simulating a maximum absolute noise level equal to 15 %). Subsequently, each variable value

was multiplied with a noise factor; for instance, for a randomly selected error of –6 %, the

respective variable value was multiplied with a noise factor equal to 0.94.

The data were partitioned into three subsets: (i) the train set, the set of training examples the

model is trained on, (ii) the validation set, which is used to tune the hyperparameters, and

(iii) the test set, which is used to test the trained model while it measures the generalization

performance. In our analysis, the train/validation/test split was selected to be 60 %/20 %/20 %.
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Table 7.1 – List of the selected hyperparameters for the predictive models.

Output variable Selected hyperparameters
RFR: max_depth ANN: epochs

Zao 8 55
CT 8 103

These percentages corresponded to 2,290/764/764 data instances, respectively. The data were

normalized using MinMaxScaler() function from sklearn library. For the regression process,

we used a Random Forest modelling procedure [40] and an Artificial Neural Network (ANN) to

estimate the target variables of interest. The formal structure of the Random Forest Regressor

(RFR) is shown in Figure 7.3. An RFR is a predictor consisting of a collection of randomized

base regression trees. These random trees are combined to form the aggregated regression

estimate:

rn(X) = EΘ[rn(X,Θ)], (7.3)

where EΘ[.] denotes expectation with respect to the random parameter, conditionally on X

(matrix consisting of the input features), andΘ = [Θ1, ... ,ΘN ] are independent and identically

distributed (i.i.d.) random variables outputs of each tree. The estimations were provided

by aggregating the individual predictions of each tree. The trees were grown by applying

bootstrapping. Based on the training data, each regression tree grew for each of the bootstrap

samples. Estimators were randomly sampled and the best split was chosen at each node.

A formal representation of an ANN is illustrated in Figure 7.4. Our ANN was composed of an

input layer, a hidden layer, and an output layer. Typically, the input layer sequentially receives

the input features as an input vector into the ANN. The hidden layer has multiple neurons

connected to the input layer with weights. Each neuron is characterized by a transfer function

of neuron (Figure 7.4). The training of ANN is conducted by determining the difference

between the processed output of the network and the target output, namely the error. Training

data are fed to the input layer and continue to the succeeding hidden layer, where they pass

through the neurons’ transfer functions, until they finally arrive radically transformed at the

output layer. During training, the network continually adjusts its weights and thresholds

until the ANN produces output which is increasingly similar to the target output (errors are

minimized). In our analysis, the training set was employed to optimize the weights of neurons

in the hidden and output layer using the Adam optimizer [41]. Upon tuning, the samples of

the test set were used as input to the optimized ANN to obtain the estimated Zao and CT .

A critical issue while training a machine learning model on the sample data is overfitting.

For instance, when the number of epochs used to train an ANN is more than necessary, the

training model learns patterns that are specific to the sample data to a great extent. In that
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Figure 7.3 – Typical representation of a random forest regression model. Adapted from [28].

case, the model is incapable to perform well on a new dataset. In other words, the model loses

generalization capacity by overfitting to the specific training data. To mitigate overfitting and to

increase the generalization capacity, the model should be trained for optimal hyperparameter

values.

For the RFR, we selected 100 estimators (namely the number of trees in the forest), while we

decided to optimize the value for max_depth (the maximum depth of the tree). For the ANN,

the batch_size (the number of samples that will be propagated through the network) was set

to be equal to 10, and the number of epochs was optimized, respectively. The number of

epochs is a hyperparameter that defines the number of times that the learning algorithm will

work through the entire training dataset. By optimizing only one hyperparameter, we keep the

complexity of the models low, and thus the models are more likely to perform well on new

data and are less restricted to the peculiarities of the particular data used.

For selecting the optimal value for max_depth, we calculated the train score and the validation

score for various values of max_depth in the range of [1, 10]. The score for RFR indicates

the coefficient of determination R2 for the predictions. Subsequently, for each target output

variable, the max_depth value with the maximum score was selected. In a similar manner,
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Figure 7.4 – Typical representation of an artificial neural network. Adapted from [28].

the train and validation losses [i.e. mean square error (MSE)] were calculated for the ANN.

In that case, loss values can be monitored by Early stopping call back function. When there

is an increment observed in loss values, training comes to halt and the respective value of

epoch indicates the optimal selection. For both Zao and CT , the highest accuracy was reported

for the RFR with max_depth = 8, whereas for ANN, training stopped at 55th epoch and 103r d

epoch for Zao and CT , respectively. Therefore, the optimal number of epochs was set to 55 and

103 for the two estimators, respectively. All optimized hyperparameters are presented in Table

7.1. Subsequently, we plotted the respective learning curves for the RFRs using the optimal

hyperparameters (Figures 7.5A,B). Each learning curve was fitted using the observed accuracy

[in terms of root mean square error (RMSE)] according to a given training sample size. The

training size was modified from 1 to 95 % of the total number of training data instances (20

samples of training size). The training error was low, and thus the training data appear to

fit well by the models (low bias). Furthermore, low variance was indicated by the small gap

between the two curves. Finally, the testing set was fed into the trained RFR to estimate Zao ,

and CT and the precision was evaluated.

Along with the main model configuration, which uses as inputs brSBP, brDBP, HR, cfPWV, and
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crPWV (M1), we additionally evaluated three additional model configurations using different

sets of inputs: (i) one which does not include HR as an input (M2), (ii) a second one that

excludes HR and replaces brSBP and brDBP with MAP (M3), and (iii) a third one that uses only

the PWV values (M4). The hyperparameters values were set equal to the same values as those

of M1.

Figure 7.5 – Learning curves presenting the impact of the number of data instances on the
RFR’s performance for Zao (A) and CT (B). Adapted from [28].

Furthermore, we assessed the importance of each input feature using the permutation feature

importances [42] for RFR. The concept of permutation feature importances relies on mea-

suring the importance of a feature by calculating the increase in the prediction error after

permuting the feature. The permutation importances were computed by shuffling the values

of each feature on the test set and by estimating the RMSE after the permutation. This process

was repeated 20 times and the mean and standard deviation of the increase in RMSE were

reported.

The training/testing pipeline and the post-analysis were implemented using the Scikit-learn

library [43] in a Python programming environment (Python Software Foundation, Python

Language Reference, version 3.6.8, Available at http://www.python.org). The Pandas and

NumPy packages were also used [44; 45].

Sensitivity to training data size

The number of data instances used for training, namely the training size, has a major effect on

the accuracy of the model’s predictions. The model’s precision as a function of the number

of training samples was evaluated by conducting sensitivity analysis. In this respect, the

regression analysis for RFR was repeated and the RMSE was calculated after decreasing the
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training size (n = 2,290) from 99 to 1 % of the total number of cases. The accuracy was

compared using the same testing population (764 subjects).

Comparison to prior art

We compared our RFR with prior methods that provide estimates of Zao and CT . Application

of previous methods required the central (aortic) blood pressure and flow waves. Systolic

and diastolic phases were defined by the dicrotic notch from the central blood pressure

waveforms and the first zero crossing for blood flow waves. Automated detection of the

peaks and minima was performed using an in-house custom software in Matlab (Mathworks,

Natick, Massachusetts, United States). The Zao was computed using two previously described

methods:

• Time-derivative peaks method:

Zao = P ′
max /Q ′

max ,

where P′
max and Q′

max are the maximum values of the pressure and flow time derivatives,

respectively [12].

• Peak flow method:

Zao = PQmax –aDBP

Qmax
,

where aDBP is the aortic DBP, Qmax is the maximum flow value, and PQmax is the aortic

pressure magnitude at the maximum flow value [12].

The CT was derived using the following previously proposed techniques:

• Decay time method: The decay time method (DTM) is based on the two-element Wind-

kessel (WK) model of the systemic circulation. Its principle is that during diastole there

is no inflow from the heart, and thus, the decrease of aortic pressure, is characterized

by the decay time. This decay can be fitted monoexponentially to any portion of the

diastole to yield the characteristic time or time constant, which is RCT . The CT can be

then calculated for a known value of peripheral resistance (R) [46].

• Pulse pressure method: The pulse pressure method (PPM) [47] is based on the fact that

the modulus of the input impedance of the arterial system is represented very well by the

two-element WK model for the low frequencies (1st –5th harmonic). Therefore, the pulse

pressure will be similar in the true arterial system and the two-element WK model. The

PPM uses an iterative process that yields the value of CT that gives the best fit between
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the measured pulse pressure and the pulse pressure predicted by the two-element WK

model.

We applied the aforementioned methods on the test data (n = 764) and compared the estimates

to the machine learning-derived predictions. The reason that we did not apply the above

methods to the entire dataset was to compare these methods and the machine learning model

on the exact same test population. Artificial random noise of the same order of magnitude

(± 15 %) was also considered for the data used for the techniques above. The pressure and

flow signals were uniformly multiplied by a scaling factor which was randomly selected as

described in the Regression analysis section.

Statistical analysis

Data are presented as mean and standard deviation (SD). The agreement, bias, and precision

between the model predictions and the reference values were assessed by using the Pearson’s

correlation coefficient (r ), the RMSE, the normalized RMSE (nRMSE), and the Bland-Altman

analysis [48]. The nRMSE was based on the difference between the minimum and maximum

values of the dependent variable (y) and was computed as RMSE/(ymax –ymi n). We performed

linear leasts quares regression for the predictions and the reference data. The slope and the

intercept of the regression line were reported. Two-sided P-value for a hypothesis test whose

null hypothesis is that the slope is zero, using Wald Test with t-distribution of the test statistic,

was calculated. The P-value < 0.05 were considered as significant. The statistical analysis was

implemented in Python (Python Software Foundation, Python Language Reference, version

3.6.8, Available at http://www. python.org).

7.3 Results

The distributions of the cardiovascular parameters of the virtual study cohort are presented

in Table 7.2. The correlations between the input features and the target output values are

also given in Table 7.3. The highest values of Pearson’s correlation coefficient were reported

between Zao/CT and the two PWV values (r ≥ 0.84).

Comparison of model predictions to the reference values

We compared the RFR and ANN estimations to the reference data for each target output.

Table 7.4 tabulates the metrics for the performance assessment of the evaluation scheme

for all model configurations. The results for the RFR M1 and ANN M1, which correspond

to the best-performing configurations, are visualized below. The scatterplot between the

RFR-predicted and the actual Zao values is given in Figure 7.6 (top panel). The Bland-Altman

plot is provided in Figure 7.6 (lower panel), in which zero bias was reported. The limits of

195



Chapter 7. Determination of aortic characteristic impedance and total arterial
compliance from regional pulse wave velocities using machine learning

Table 7.2 – Summary of the cardiovascular characteristics of the virtual study cohort (n =
3,818).

Variable
Value

(n = 3,818)
Brachial systolic blood pressure [mmHg] 134.51±24.1
Brachial diastolic blood pressure [mmHg] 77.27±21.31
Brachial pulse pressure [mmHg] 57.24±22.58
MAP [mmHg] 94.51±20.29
Aortic systolic blood pressure [mmHg] 122.54±23.73
Aortic diastolic blood pressure [mmHg] 80.5±21.48
Aortic pulse pressure [mmHg] 42.04±19.38
Stroke volume [mL] 81.18±8.03
Heart rate [bpm] 73.26±14.9
Aortic impedance [mmHg.s/mL] 0.056±0.012
Total arterial compliance [mL/mmHg] 1.14±0.47
Total peripheral resistance [mmHg.s/mL] 0.98±0.21
Carotid-femoral PWV [m/s] 8.06±1.03
Carotid-radial PWV [m/s] 10.17±1.3

agreement (LoA), within which 95 % of errors are expected to lie, were found to be equal to ±
0.012 mmHg.s/mL. Figure 7.7 illustrates the CT predictions in comparison to their reference

values. Again, bias was close to zero (-0.01 mL/mmHg), while the LoA were equal to ± 0.4

mL/mmHg. The scatterplot and Bland-Altman plot for the ANN are shown in Figures 7.8

and 7.9 for Zao and CT respectively. For Zao , the ANN-LoA were (–0.013, 0.010) mmHg.s/mL,

whereas for CT predictions, the ANN-LoA found to be subtly narrower than the RFR and equal

to ± 0.3 mL/mmHg. For both machine learning approaches, no biases were reported. The

mean difference between the Zao predictions and the ground truth Zao values lied within a

similar range for the two models, i.e. (–0.012, 0.012) and (–0.013, 0.010) mmHg.s/mL for RFR

and ANN, respectively. The LoA of the CT -RFR [(–0.39 0.37) mL/mmHg] were slightly broader

than the LoA of the CT -ANN estimator [(–0.32 0.33) mL/mmHg]. Substantially higher errors

were reported when the BP information was omitted from the inputs, especially for the Zao

prediction (correlation was around to 0.75). Table 7.5 presents the feature importances of the

input regressors for Zao and CT , respectively. For Zao , brDBP appeared to have the highest

importance level followed by brSBP and crPWV. In the case of CT , brDBP was reported to have

the dominant importance value, followed by cfPWV and crPWV.

Sensitivity to training data size

The nRMSEs decreased gradually with increasing training size (Figure 7.10). Errors in Zao

were higher than 8 % for a training dataset with 687 subjects or less. The nRMSE of the CT

predictions exceeded 8 % when the training size was smaller than 458 data instances. It was
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Table 7.3 – Correlation between the input features and the target outputs.

Parameters
r

(n = 3,818)
brSBP/Zao 0.51
brDBP/Zao -0.41
HR/Zao 0.17
cfPWV/Zao 0.87
crPWV/Zao 0.85
brSBP/CT -0.48
brDBP/CT 0.39
HR/CT -0.16
cfPWV/CT -0.87
crPWV/CT -0.84

observed that, for both curves, addition of new data points had no significant impact on

the accuracy after reaching the 20 % of the entire training population (corresponding to 458

subjects).

Comparison to prior art

Table 7.6 presents the comparison between our proposed PWV-based machine learning

models and a list of previously published methods, which, in contrast to our method, use

the central aortic blood pressure and flow waveforms. The PWV-based machine learning

estimators for Zao outperformed all the other methods achieving a correlation of 0.9. The

peak flow method and the time-derivative peaks method demonstrated lower accuracy (r ≤
0.79 and broader LoA). Estimation techniques for CT yielded correlation coefficients equal or

higher than 0.93.

7.4 Discussion

The Zao contributes to the pulsatile arterial load faced by heart during ejection and has been

shown to be an independent predictor of LV mass index in hypertension [49]. Moreover, CT

offers a valuable assessment not only for cardiovascular (CV) risk, but also for the relationship

between structural and functional changes in the arterial system with respect to its elasticity

[50]. In a progressively aging population, effective monitoring of powerful biomarkers, such

as Zao and CT , is imperative. Despite the great efforts for monitoring several biomarkers for

arterial stiffness, there is evidence that the prognostic value of arterial stiffness as assessed by

current techniques might be compromised in the elderly or special populations [51; 52; 53; 54].

Furthermore, there are methods, such as the pulse contour techniques for minimally invasive

cardiac output monitoring, which are dependent on CT [55].
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Table 7.4 – Regression statistics between model predictions and reference values.

Model Slope Intercept r P-value RMSE nRMSE

RFRZ ao M1 0.77
0.012

mmHg.s/mL
0.89 <0.001

0.006
mmHg.s/mL

7.78 %

RFRZ ao M2 0.77
0.013

mmHg.s/mL
0.89 <0.001

0.006
mmHg.s/mL

7.77 %

RFRZ ao M3 0.66
0.019

mmHg.s/mL
0.81 <0.001

0.008
mmHg.s/mL

9.91 %

RFRZ ao M4 0.55
0.025

mmHg.s/mL
0.75 <0.001

0.009
mmHg.s/mL

11.20 %

RFRC T M1 0.81
0.21

mL/mmHg
0.93 <0.001

0.19
mL/mmHg

7.31 %

RFRC T M2 0.80
0.22

mL/mmHg
0.93 <0.001

0.19
mL/mmHg

7.37 %

RFRC T M3 0.73
0.31

mL/mmHg
0.88 <0.001

0.24
mL/mmHg

9.21 %

RFRC T M4 0.63
0.42

mL/mmHg
0.82 <0.001

0.29
mL/mmHg

11.11 %

ANNZ ao M1 0.86
0.007

mmHg.s/mL
0.90 <0.001

0.006
mmHg.s/mL

7.47 %

ANNZ ao M2 0.77
0.012

mmHg.s/mL
0.90 <0.001

0.006
mmHg.s/mL

7.40 %

ANNZ ao M3 0.69
0.016

mmHg.s/mL
0.83 <0.001

0.008
mmHg.s/mL

9.60 %

ANNZ ao M4 0.56
0.022

mmHg.s/mL
0.76 <0.001

0.009
mmHg.s/mL

11.28 %

ANNC T M1 0.88
0.14

mL/mmHg
0.95 <0.001

0.16
mL/mmHg

6.26 %

ANNC T M2 0.89
0.17

mL/mmHg
0.94 <0.001

0.18
mL/mmHg

6.87 %

ANNC T M3 0.75
0.29

mL/mmHg
0.88 <0.001

0.24
mL/mmHg

9.29 %

ANNC T M4 0.64
0.45

mL/mmHg
0.83 <0.001

0.29
mL/mmHg

10.94 %

Table 7.5 – Feature importances for the prediction of Zao and CT using RFR.

Feature Permutation importance
Zao [mmHg.s/mL] CT [mL/mmHg]

Brachial SB 0.0031±0.0002 0.09±0.01
Brachial DB 0.0058±0.0002 0.21±0.01
Heart rate 0.0001±0.0000 0.01±0.00
Carotid-femoral PWV 0.0016±0.0001 0.13±0.01
Carotid-radial PWV 0.0021±0.0001 0.12±0.01
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Figure 7.6 – Comparison between the estimated and the reference Zao data. Scatterplot and
Bland–Altman plot between the estimated Zao and the reference Zao using the RFR. The solid
line of the scatterplot represents equality. In Bland–Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

Measurement of PWV can be utilized for the estimation of both local [56; 57] and regional

arterial distensibility [58]. The evaluation of PWV is based on the estimation of the pulse transit

time between two arterial sites, and the measurement of the distance between them. There is

emerging evidence supporting that aortic PWV, i.e. cfPWV, is an independent predictor of CV

risk [26; 59]. Likewise, the peripheral PWV, e.g. crPWV, has been shown to be an informative

indicator of vasodilator reserve and a predictor of coronary artery disease [60]. Despite the

widespread acceptance of PWV, we should not be detracted from the fact that PWV per se

is still an indirect measure of the arterial properties and provides no immediate measure

of the adverse effects of vascular stiffening on circulatory hemodynamics. For instance,

although PWV might be often clinically relevant, it is not the sole determinant of the timing

and consequences of the reflected waves [61; 62]. The CT may be physiologically more relevant

than regional or local arterial compliance surrogate (such as PWVs), in terms of modulation

of cardiac load, LV function, and CV risk assessment. In particular, the CT can have greater

impact in assessing elderly population or individuals with increased vascular stiffness, where

PWV appears to have limited prognostic value. Moreover, Zao has been associated with cases

of increased cardiac and cerebral mortality [2; 59]. On the other hand, PWV is computed

between two arterial sites, and thus cannot provide a global description of the arterial network

as Zao does. Evidence reported by Segers et al. [16] presents that measurement of central
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Figure 7.7 – Comparison between the estimated and the reference CT data. Scatterplot and
Bland–Altman plot between the estimated CT and the reference CT using the RFR. The solid
line of the scatterplot represents equality. In Bland–Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

pressure and flow for the evaluation of global arterial parameters is more relevant and provides

major mechanistic information that it should be also considered when the more frequently

acquired PWV is evaluated.

Knowledge of Zao and CT might have additional diagnostic impact as well as additive prognos-

tic value beyond PWV. Estimation of the Zao and CT is, however, difficult in clinical practice,

as it requires concomitant recordings of pressure and flow waveforms in the proximal aorta

[63; 12; 47; 15]. The methodological complexity and lack of validation have prohibited their

application in the everyday clinical practice. For this reason, capitalization of the regional PWV

measurements for estimating Zao and CT may permit their clinical assessment in a simple

and cost-efficient way.

The present study suggested a machine learning predictive tool for Zao and CT by using

regional PWV measurements and cuff BP. The cfPWV is a measure of central arterial stiffness,

whereas the crPWV expresses a mix of central and peripheral stiffness of the arterial tree. The

principle of this concept is that the combined information embedded in the two indicators

of regional elasticity can lead to an improved characterization of Zao and CT . The results

indicated that the suggested framework appears to apply well over a wide range of simulated
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Figure 7.8 – Comparison between the estimated and the reference Zao data. Scatterplot and
Bland–Altman plot between the estimated Zao and the reference Zao using the ANN. The solid
line of the scatterplot represents equality. In Bland–Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

physiological conditions. The methodology was appraised by testing two different machine

learning models which, with proper hyperparameters’ selection, achieved a similar predictive

precision. This may also suggest that there is no high dependency on the nature of the machine

learning approach, while it can provide preliminary evidence of the validity of the proposed

framework.

Our methodology seems to offer a competitive advantage in comparison to prior methods.

More specifically, it does not require central pressure and flow waves, for which the gold

standard measurements are invasive. The invasive nature of the central BP wave’s acquisition

has been addressed either by the use of the carotid BP which is considered a good surrogate

of aortic BP and can be easily acquired via tonometry, or by the use of devices that provide

an approximation of the central BP wave via transformation of the radial BP wave [64; 65].

Measurement of central flow has been feasible by non-invasive techniques (e.g. ultrasound

or magnetic resonance imaging) which are, however, expensive and rather dependent on

operator skills. Yet, the results of this study showed that it outperformed some of the existing

estimators. Previous methods for estimating Zao had significantly wider LoA when compared

to our PWV-based machine learning estimators, while all current methods were also found to

have high biases (> 0.01 mmHg.s/mL). For CT , PWV-based ANN had a similar performance

201



Chapter 7. Determination of aortic characteristic impedance and total arterial
compliance from regional pulse wave velocities using machine learning

0 1 2 3 4
Reference CT [mL/mmHg]

0

1

2

3

4

Es
tim

at
ed

 C
T 

[m
L/

m
m

H
g]

Scatterplot

0 1 2 3 4
Average CT [mL/mmHg]

1.0

0.5

0.0

0.5

1.0

C
T 

Er
ro

r [
m

L/
m

m
H

g]

Upper LoA: 0.33 mL/mmHg

Bias: 0.01 mL/mmHg

Lower LoA: -0.32 mL/mmHg

Bland-Altman analysis

Figure 7.9 – Comparison between the estimated and the reference CT data. Scatterplot and
Bland–Altman plot between the estimated CT and the reference CT using the ANN. The solid
line of the scatterplot represents equality. In Bland–Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

to the PPM estimator, while the DTM yielded a lower precision. It is to be stressed that the

comparison of the PWV-based machine learning estimators with the prior art cannot be

direct and absolute, due to two main reasons: (i) the different nature of the required inputs,

and (ii) the simplified simulation of the measurement error in the time signals. Specifically,

although the previously published techniques are non-invasive, they require simultaneous

measurement of the central blood pressure and flow, which are more difficult to acquire

compared to the measurement required for the proposed machine learning estimator. In

our experiments, the testing of these methods was done using the simulated aortic blood

pressure which is the gold standard; in a real clinical setting, invasive aortic blood pressure is

rarely available. Regarding the noise simulation, the artificial errors added to the signals were

simplified; a random scaling factor was selected and multiplied with the entire signal. Hence,

the error did not vary during the entire beat, and, as a result, the shape of the wave, to which

the computational algorithms are highly dependent, remained unaffected.

The main advantage of our proposed method pertains to its simplicity and convenience (for

both the patient and the physician) rather than its increased accuracy in comparison to the

state of the art. The existing techniques require non-invasive, yet expensive and complex, flow
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Figure 7.10 – Sensitivity of precision in terms of nRMSE to the number of the training data.
The 100 % of the training size corresponds to 2,290 cases. Adapted from [28].

or velocity measurements for evaluating Zao and CT . It is undeniable that previous studies

have shown that current non-invasive techniques provide high accuracy and reliability for

both Zao and CT when compared with the invasive ground truth [13; 16]. However, being able

to assess Zao and CT from PWVs alone could be very valuable given that such an approach

eliminates the need for flow measurement which requires magnetic resonance imaging or

echocardiographic procedures. Undoubtedly, both techniques are not as accessible as tonom-

etry, are much more expensive in comparison to the simple tonometric recordings, and render

necessary the presence of well-trained personnel to handle the required equipment.

Following a regression analysis’ concept, in a previous in silico study, Vardoulis et al. [66]

demonstrated that CT could be effectively derived using only cfPWV. They provided a sim-

ple equation that directly relates the cfPWV measurement to CT . The results hypothesized

that solely cfPWV should be sufficient for accurately estimating CT . Further light upon the

significance of including more features to the regression method can be provided by assessing

the features’ importance levels. As per the feature importances of our study, indeed cfPWV

appeared to be among the most significant parameter for estimating CT . In order to further

verify the necessity of including additional features to cfPWV (namely cuff BP and crPWV), we

predicted CT using only cfPWV. Following a similar approach with Vardoulis et al. yielded a

lower prediction precision with an nRMSE = 12.4 %, a zero bias, while LoA were reported to be

± 0.64 mL/mmHg. This error is approximately two times higher than the error provided by the

machine learning model of this study (6.26 % from ANN estimator). Although the cfPWV-based

estimator performed adequately, we may deduce that inclusion of both cfPWV and crPWV im-

proves the precision in CT estimation. Importantly, this apparently slight improvement might

be rather necessary when performing the analysis on an in vivo population. Yet, the regression

analysis, which uses both PWV values might provide a more clinically relevant estimation of

CT , as it combines both a proximal and a distal approximation of arterial stiffness, and thus a
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Table 7.6 – Comparison of the proposed machine learning-based Zao and CT estimators to
prior art.

Method
Estimated Zao

[mmHg.s/mL]
Reference Zao

[mmHg.s/mL]
Error

[%]
r

Bland-Altman
bias (LoA)

[mmHg.s/mL]
Time-derivative
peaks method*

0.044±0.008

0.056±0.014

Min: -55
Max: -20

0.66
-0.011

(-0.030, 0.007)

Peak flow method* 0.071±0.018
Min: -14
Max: 107

0.79
0.016

(-0.007, 0.038)

PWV-based RFR 0.056±0.013
Min: -27,
Max: 34

0.89
-0.000

(-0.012, 0.012)

PWV-based ANN 0.056±0.012
Min: -21,
Max: 37

0.90
-0.000

(-0.013, 0.010)

Estimated CT

[mL/mmHg]
Reference CT

[mL/mmHg]
Errors

[%]
r

Bland-Altman
bias (LoA)

[mL/mmHg]
Decay time
method*

1.60±0.71

1.16±0.51

Min: -10,
Max: 152

0.93
0.44

(-0.16, 1.05)
Pulse pressure
method*

1.23±0.48
Min: -24,
Max: 58

0.94
0.07

(-0.27, 0.41)

PWV-based RFR 1.16±0.45
Min: -36,
Max: 62

0.93
-0.01

(-0.39, 0.37)

PWV-based ANN 1.18±0.48
Min: -28,
Max: 57

0.95
0.01

[-0.32, 0.33]
Errors are expressed as 100 x (Xest - Xactual )/Xactual , where X is the target output under
test (i.e. Zao or CT ).

Limits of agreement are defined as (bias + 1.96 SD, bias - 1.96 SD).

*These methods utilize both the central blood pressure and flow waves for estimating Zao

and CT .

more complete description of the arterial tree’s elasticity.

This study further explored and quantified the importance of every input for the predictive

performance. Diastolic pressure had the most significant contribution to the estimations. This

is to be expected given that both Zao and CT are strong determinants of mean pressure and by

extension the brDBP. Furthermore, most of the arterial compliance is contained in the aorta.

This could explain why the permutation importance of cfPWV (namely aortic PWV) was found

to be slightly higher compared to crPWV (Table 7.5). Yet, the two PWV inputs presented similar,

high importance levels. It is highly possible that the bulk of the required information for Zao

and CT is contained in the common arterial path included in both cfPWV and crPWV; namely

the arterial segments which are closer to the aorta. Hence, the inclusion of both is important
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to detect and reveal this joint information. Attention must be paid to the fact that this study

uses synthetic data produced by a simulator and, hence, there is a direct deterministic relation

between the input and the outputs. This relation may lead to an increased accuracy in the

predictions. The results regarding the importance of each feature would be of benefit if they

are considered in a qualitative way.

We additionally evaluated the models’ sensitivity to the inputs by training and testing the

models using different sets of features. Given that the HR has been shown to have a pressure-

independent impact on PWV [67], we decided to include it in our experiments in order to

consider its independent contribution and to enhance the clinical relevance of our results.

Nevertheless, it was shown that exclusion of HR from the input vector did not harm the

accuracy. Moreover, both RFR and ANN performed adequately when brSBP and brDBP were

replaced by MAP. However, when only the PWV values were fed to the models, the precision

was deteriorated for both Zao and CT . This may be explained due to the BP-dependency

of PWV which has been shown to have implications for the clinical use of arterial stiffness

measurements, both in risk classification and in treatment monitoring of individual patients

[68].

Recent advancements in Artificial Intelligence (AI) have led to new research possibilities

and methodologies for novel cardiovascular modelling and predictive tools for clinical use

[69]. The present study is in line with this direction that introduces AI to the field of clinical

medicine. There have been several novel works toward this path, including estimation of

PWV or central BP [70; 71; 72]. Machine learning modelling allows for enhancing monitoring

of vascular biomarkers via the analysis of complex datasets, signals and/or images. The

availability of large clinical datasets and powerful computing systems further encourage the

application of machine learning-based concepts. In addition, nowadays, vascular parameters

or arterial pulse signals can also be obtained using unobtrusive devices such as smartphones

and smartwatches, providing a plethora of available data.

Limitations

The main limitation of the present study is that the data used in the analysis have been derived

from a computer simulator rather than a real human population. A machine learning model

which is trained/tested using in silico data, it is likely that it will not be capable of making

accurate predictions for a real patient. Yet, the in silico data allow us for performing an initial

validation of the proposed methodology, whose results will allow to proceed with the clinical

validation. Previous works have used a similar approach to validate machine learning-based

techniques using virtual patients when real clinical data were not available [73; 74; 27]. Hence,

the present study proposes the methodology rather than the model per se. Stricto sensu,

based on the findings from an in silico population, we may only deduce that the proposed

machine learning-based methodology could also work using real human data for both the
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training and testing procedures. The latter hypothesis remains to be verified in vivo. Future

work will be done toward this direction. Nevertheless, synthetic data can sufficiently simulate

the content of the real clinical measurements, while they allow for controlling the distribution

of rare but relevant conditions or events. It is also to be mentioned that the in silico data allow

us for appraising this concept using the actual Zao and CT , which are derived analytically from

the computer simulator and would not have been available in vivo. Future work should also

include validation of the method on populations with pathologies or special populations.

Finally, a major consideration with respect to the application of machine learning in healthcare

is generalizability, i.e. the ability of a model to predict accurately on data sources which are

not included in the dataset of the specific study. Dexter et al. [75] demonstrated that studies

showing high-performance machine learning models may not perform well when applied

to data from other holdout systems. Each modelling strategy is limited by assumptions and

data collection is dependent on several factors, including clinical context, local factors (e.g.

physician preferences, local care standards), medication selection or other clinical decisions

which influence the model development [76]. Therefore, direct validation of a machine

learning algorithm to a new dataset should not assume model’s strong performance under

all conditions; even when the model is trained using real clinical data. The above limitations

underline the need to consider more inclusive training approaches for machine learning

models which could encourage the practical application of machine learning in healthcare.

Conclusion

This paper introduces a non-invasive simple-to-use estimator for two valuable hemodynamic

quantities, namely the Zao and CT . The proposed approach incorporates cuff BP and regional

PWV data, along with a versatile and scalable machine learning pipeline. Our findings provide

evidence that data related to regional arterial stiffness can be rather informative for obtaining

a global description of arterial elasticity. Further validation of the proposed methodology

on a large human cohort remains to be conducted. Upon successful clinical validation, this

framework may provide a reliable method to inform the clinicians about arterial stiffness,

leading to an improved diagnosis and patients’ treatment management.
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Abstract

In a progressively aging population, it is of utmost importance to develop reliable, non-

invasive, and cost-effective tools to estimate biomarkers that can be indicative of cardiovascu-

lar risk. Various pathophysiological conditions are associated with changes in the total arterial

compliance (CT ), and thus its estimation via an accurate and simple method is valuable. Direct

non-invasive measurement of CT is not feasible in clinical practice. Previous methods exist for

indirect estimation of CT , which, however, require non-invasive, yet complex and expensive,

recordings of the central pressure and flow. Here, we introduce a novel, non-invasive method

for estimating CT from a single carotid waveform measurement using regression analysis.

Features were extracted from the carotid wave and are combined with demographic data.

A prediction pipeline is adopted for estimating CT using, firstly, feature-based regression

analysis and, secondly, the raw carotid pulse wave. The proposed methodology was appraised

using the large human cohort (n = 2,256) of the Asklepios study. Accurate estimates of CT

were yielded for both prediction schemes; namely r = 0.83 and normalized-RMSE = 9.58 % for

the feature-based model, and r = 0.83 and normalized-RMSE = 9.67 % for the model which
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used the raw signal. The major advantage of this method pertains to the simplification of the

technique offering easily applicable and convenient CT monitoring. Such an approach could

offer promising applications, ranging from fast and cost-efficient hemodynamical monitoring

by the physician to integration in wearable technologies.
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8.1. Introduction

8.1 Introduction

In a progressively aging population, it is of utmost importance to develop reliable, non-

nvasive, and cost-effective tools for estimating relevant biomarkers which can be indicative

of cardiovascular risk. Numerous invasive and non-invasive markers have been researched,

but there is still the need for additional structural and functional parameters that would be

able to assess cardiovascular risk [1]. The total arterial compliance (CT ) is a biomechanical

property of the arterial tree with great physiological and pathological importance [2; 3; 4]. CT

and peripheral resistance constitute a major part of the arterial load on the heart [5]. Arterial

compliance expresses the ability of the arterial system to store blood during systole without

excessive pressure rise, and influences central blood pressure [6] and stroke volume [7]. The

CT is becoming a promising parameter for evaluating the relationship between structural

and functional changes in the vascular system with respect to its elasticity and capacity

[8; 9]. Alterations in arterial compliance are associated to various physiological (aging) [10]

or pathological (hypertension) conditions [11], which cannot be necessarily assessed by

current biomarkers. Importantly, CT has been found to be superior over traditional evaluation

techniques including pulse pressure and echocardiography [9; 11]. In addition, other studies

have shown that CT was proven capable of differentiating among diseased, elderly, and health

individuals [10; 11; 12]. In view of the emerging evidence on the importance of CT [8], the

development of an accurate and simple method for its estimation may be valuable.

Direct non-invasive measurement of CT is not feasible in the clinical practice. Several methods

have been proposed for indirect estimation of CT [13; 14; 15; 16]. Most commonly, these

methods require simultaneous recordings of the proximal aortic pressure and flow waves.

Some of the most reliable and accurate techniques include the decay time method (DTM), the

area method (AM), and the pulse pressure method (PPM), [15; 17]. The principle of the DTM is

that during diastole there is no inflow from the heart, and thus, the decrease of aortic pressure,

is characterized by the decay time. This decay can be fitted mono-exponentially to any portion

of the diastole to yield the characteristic time or time constant, which is RCT , where R is a

known value of peripheral resistance [18]. The AM was introduced by Randall [19] and it

essentially represents an integral variation of the exponential decay method. Compliance is

calculated from

RCT =
∫ t2

t1

P d x/(P1 −P2),

where P1 and P2 are diastolic pressure at time points t1 and t2, respectively. The PPM is based

on the fact that the modulus of the input impedance of the arterial system is represented

very well by the two-element Windkessel model for the low frequencies 1st to 5th harmonic).

Therefore, the pulse pressure will be similar in the true arterial system and the two-element

Windkessel model. The PPM uses an iterative process that yields the value of CT that gives

the best fit between the measured pulse pressure and the pulse pressure predicted by the
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two-element Windkessel model.

Yet, the invasive nature, lack of convenience or high cost of the required measurements have

limited the assessment of CT , namely the inverse of arterial stiffness, in every day clinical

practice, while surrogates of local or regional arterial stiffness have been applied more often

[16; 20]. In particular, the carotid-femoral pulse wave velocity (cfPWV) is now considered as

the gold standard to evaluate arterial stiffness [21].

Recent advances in machine learning have expanded the areas and the opportunities in

developing novel modelling and predictive methods for clinical use [22]. In a previous study,

Tavallali et al. proposed and validated a method for estimating cfPWV from the carotid

waveform and clinical parameters using neural networks [23]. Their results showed that this

approach can provide accurate estimates of cfPWV, offering an advancement in the assessment

of arterial stiffness via cfPWV.

In view of these nascent opportunities, the present study introduces a novel, non-invasive,

cost-efficient method for estimating CT from a single carotid waveform using regression

analysis. The proposed methodology uses an uncalibrated carotid blood pressure waveform

which is subsequently calibrated using the brachial blood pressure values. Features are

extracted from the carotid wave and are combined with readily available clinical parameters

such as age, gender, height, and weight. A prediction pipeline is adopted for estimating CT

using, firstly, a feature-based regression analysis and, secondly, the raw carotid pulse wave.

A main advantage of this method pertains to the avoidance of aortic blood flow recording

which is commonly required by prior CT estimators. Given that accurate values of CT are

cumbersome to obtain in the intact organism, in this study, the accuracy of the predictive

model was evaluated by comparing the predictions against the CT values which were derived

using the precise and extensively validated PPM [18; 14; 15].

8.2 Methods & materials

Asklepios database

Human data were available from the Asklepios study, a broad prospective longitudinal study

with the aim of assessing the development and progression of cardiovascular disease [24]. A

total of 2,404 subjects were found eligible to be included in the study. The participants un-

derwent a non-invasive evaluation of central hemodynamics, including recordings of carotid

blood pressure and aortic blood flow waveforms. The inclusion and exclusion criteria are listed

in Table 8.1. The study protocol was approved by the ethical committee of Ghent University

Hospital and informed consent of participation was given by all subjects. A comprehensive

description of the Asklepios data can be found in the original publication [24].
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Table 8.1 – Asklepios study inclusion and exclusion criteria.

Inclusion criteria
1 Male and female volunteers aged 35–55 years at study initiation, living in the
communities of Erpe–Mere or Nieuwerkerken.
Exclusion criteria
1 Clinical presence of atherosclerosis/atherothrombosis
(a) Atherosclerosis: symptomatic or hemodynamically significant (> 50 % stenosis)
presence of atherosclerosis in any major vascular bed.
(b) Atherothrombosis: acute coronary syndromes, cerebrovascular thrombosis.
(c) Previous or planned revascularization procedure (carotid, coronary, lower limb).
2 Major concomitant illness
(a) Cardiac: cardiomyopathy/heart failure, significant valvular disease, previous
cardiac surgery, (complex) congenital heart disease, heart transplant.
(b) Organ failure: end-stage renal disease, hepatic insufficiency, previous organ
transplant.
(c) Malignant tumours (recently diagnosed or currently treated, with < 3 years
tumour-free follow-up or tumours that are metastatic or initial treatment was not
curative).
(d) Other conditions in which the screening physician expected a life
expectancy < 5 years.
3 Diabetes mellitus
(a) Diabetes mellitus type 1.
(b) Diabetes mellitus type 2 if confirmed macrovasculopathy (see exclusion
criterion 1) or significant renal impairment [see exclusion criterion 2(b)].
4 Specific conditions precluding accurate hemodynamic assessment.
(a) Continually irregular cardiac cycle: atrial fibrillation.
(b) State of hyperdynamic activity: pregnancy (in the preceding 6 months).
5 Inability to provide informed consent.
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Measurement of pressure and flow waves

Blood pressure recordings were performed at the left common carotid artery via applanation

tonometry using a Millar pen-type tonometer (SPT 301; Millar Instruments, Houston, Texas,

USA). The measurement set-up, processing, and calibration procedure (based on sphygmo-

manometer systolic and diastolic blood pressure and applanation tonometry at the brachial

artery) were previously described in detail [24; 25].

The carotid pressure was derived as a "mean" waveform of multiple beats from a 20-second

recording [6]. Pressure data were recorded in continuous sequences of 20 seconds. The

postprocessing included signal filtering (Savitsky-Golay filter, Matlab, The Mathworks Inc.).

Subsequently, identification of individual cycles, detrending (i.e. linearly smoothing out

eventual differences in the numerical value of the start and end of the cycle), and averaging

were performed. The cycles with a cycle length shorter or longer than 20 % of the mean cycle

duration were automatically deselected. The same applied for cycles with a shape surpassing

the “envelope” curves, which were constructed from the average ± (two times the standard

deviation). The process was repeated iteratively until all cycles were within the “envelope”

curves. As an arbitrary quality criterion, data were accepted only if minimally 10 cycles were

retained. The average of these cycles was considered as the tonometry recording for the

carotid artery. The carotid waveform was calibrated by assuming that diastolic and mean BP

values remain fairly constant for the major arteries.

Flow at the aorta was measured using ultrasound (VIVID 7; GE Vingmed Ultrasound, Horten,

Norway) from the cross-sectional area and blood velocities in the left ventricular outflow

tract (LVOT). The internal diameter of the LVOT was measured in the parasternal long-axis

view at the valve annulus, and LVOT area was calculated assuming a circular cross-section.

Flow velocities were obtained in the LVOT via pulsed wave Doppler in the apical 5-chamber

view. Images were exported in raw DICOM format and processed off-line within a dedicated

software interface in Matlab (The Mathworks, Natick, MA). For each cardiac cycle, the onset

and end of systolic ejection were visually delineated with two cursors, after which the contours

in the systolic phase were automatically traced using the transition in pixel intensity above

a user-defined threshold value. Two to three cycles were averaged, and the average cycle

sub-sampled to 500 sample points and smoothed using a Savitsky-Golay filter (order 3, frame

width 31). The maximal velocities were multiplied with the LVOT cross-sectional area to obtain

the aorta flow waveform (assuming a flat velocity profile in the LVOT). This approach yielded

physiologically relevant values of stroke volume and cardiac output [2].

The heart rate (HR) was calculated from the average duration of pressure and flow signals.

The time vectors of the two signals were normalized, synchronized and then denormalized,

rendering the heart cycle length equal to the average length of the pressure and flow waveform.
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Derivation of the reference compliance

Measurement of the real CT values in a human cohort is not feasible. In the present study, the

PPM was used as the ground truth value for compliance [18]. The PPM is based on the fact

that the modulus of the input impedance of the arterial system is represented very well by

the two-element Windkessel model for the low frequencies (1st to 5th harmonic). Therefore,

the pulse pressure will be similar in the true arterial system and the two-element Windkessel

model. From the ratio of mean pressure over mean flow we derive peripheral resistance. Then,

using measured flow as input to the two-element Windkessel, the predicted pulse pressure is

fit to the actual pulse pressure by adjusting compliance. Compliance adjustment is done by a

simple "trial and error" type of approach knowing that lower compliance yields larger pulse

pressures. Following an iterative process, the value of the compliance (CT ) that gives the best

fit of the measured pulse pressure provides the estimate of the compliance. The method has

been thoroughly validated using both in silico [18; 17] and in vivo data [14], and it has been

proven to be capable of accurately estimating arterial compliance.

Features extraction from the carotid pressure wave

Features were extracted from the carotid pressure signal and its time derivative (Figure 8.1).

The features included the systolic blood pressure (SBP), the diastolic blood pressure (DBP), the

dicrotic notch pressure point (PDN ), the dicrotic notch time point (tDN ), the upstroke systolic

area (Aupstr oke ), the total systolic area (As y stol i c ), the diastolic area (Adi astol i c ), the peak of

time derivative (dP/dtmax ), the time point that peak derivative occurs (tdP/dtmax ), and the

HR.

Regression analysis

The extracted features, i.e. SBP, DBP, MAP, PP, PDN , tDN , Aupstr oke , As y stol i c , Adi astol i c , dP/dtmax ,

tdP/dtmax , HR, as well as the demographic data including age, gender, height, weight were

used as the input features to the machine learning model. The CT (as derived from PPM) was

set to be the target output variable. The data were organized in pairs (inputs-outputs) and

were kept for the training/testing process. For the regression process, we used an artificial

neural network (ANN) and a linear regressor (LR) to estimate the target variable of interest.

Furthermore, the performance of a predictive model including cardiac output (CO) as an

additional input feature was assessed. It should be noted that the models including the CO

feature are not considered as the main focus of the present study. We, however, decided to

include them in the analysis for investigating the importance of CO in the estimations. For

the ANN, a fixed one-hidden layer structure was selected and the “Adam” optimizer was used

[27]. In addition, the ANN was trained/tested using as input the entire raw carotid waveform,

as well as demographic data. The carotid BP waveforms were sampled at 100 data points per
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Figure 8.1 – Indication of features on the carotid pressure waveform and the time-derivative.
Adapted from [26].

cycle. The predictive models are summarized in Table 8.2.

One-hundred forty eight out of the 2,404 participants were excluded due to missing or erro-

neously measured data. Their exclusion led to a final population of 2,256 participants. The

data were randomly split into three sets: a training set (80 % of the total dataset), a validation

set (10 %) and a test set (10 %). Therefore, out of the entire cohort, 1,796 subjects were used for

the training, 223 data instances were used as validation for the hyperparameter selection and

237 subjects were kept for the testing. To mitigate overfitting and to increase the generalization

capacity, the model should be trained for optimal hyperparameter values. For the ANN, the

batch_size (defines the number of samples that will be propagated through the network) was

set to be equal to 200, while the number of epochs was optimized. The number of epochs

defines the number of times that the learning algorithm works through the entire training

dataset. For selecting the optimal value for epochs, we computed the train loss and the vali-

dation loss for various values of epochs. Here, the loss corresponds to the mean square error

(MSE). Loss values were monitored by Early stopping call back function. When an increment is

observed in the loss values, training comes to halt and the respective value of epoch indicates
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Table 8.2 – Summary of all the machine learning models trained/tested in this study.

Model Inputs Input vector size

LR1
SBP, DBP, MAP, PP, PDN , tDN , Aupstr oke , As y stol i c ,
Adi astol i c , dP/dtmax , tdP/dtmax , HR, age, gender,
height, weight

16 inputs

LR2
SBP, DBP, MAP, PP, PDN , tDN , Aupstr oke , As y stol i c ,
Adi astol i c , dP/dtmax , tdP/dtmax , HR, age, gender,
height, weight, CO

17 inputs

ANN1
SBP, DBP, MAP, PP, PDN , tDN , Aupstr oke , As y stol i c ,
Adi astol i c , dP/dtmax , tdP/dtmax , HR, age, gender,
height, weight

16 inputs

ANN2
SBP, DBP, MAP, PP, PDN , tDN , Aupstr oke , As y stol i c ,
Adi astol i c , dP/dtmax , tdP/dtmax , HR, age, gender,
height, weight, CO

17 inputs

ANN3
Entire raw carotid pressure waveform, HR, age,
gender, height, weight

105 inputs

ANN4 Entire raw carotid pressure waveform, HR 101 inputs

ANN5
PP, SBP, Adi astol i c , As y stol i c , weight
(Most important features)

5 inputs

Table 8.3 – Optimal number of epochs for every ANN configuration.

CT models Epochs

ANN1 118
ANN2 380
ANN3 187
ANN4 212
ANN5 101

the optimal selection. All the yielded optimized hyperparameters are aggregated in Table 8.3.

Subsequently, the test set was fed into the trained models to predict CT and the precision was

evaluated.

The current study aimed to evaluate the importance of each input feature for the CT prediction.

The importance was quantified by the use of the permutation feature importances [28]. The

concept of permutation feature importances relies on measuring the importance of a feature

by calculating the increase in the prediction error after permuting the feature. The permutation

importances were computed by shuffling the values of each feature on the test set and by

estimating the RMSE after the permutation. This process was repeated 20 times and the mean

and standard deviation of the increase in RMSE were reported. Subsequently, an additional

ANN was trained/tested using the 5 most important features yielded by the aforementioned

analysis. The training/testing pipeline as well as the pre- and post-analyses were implemented
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using the Scikit-learn library [29] in a Python programming environment. The Pandas and

Numpy packages were also used [30; 31].

Sensitivity to noise and variations in the wave morphology

We further evaluated the robustness of the method in the case of measurement noise or

variations in the morphology of the wave. The evaluation was done following two controlled

experiments. Firstly, errors were considered for the extraction of the wave-based features for

ANN1 model. Especially, errors in features were simulated with a random distribution. The

error for each variable was randomly drawn from the range of [–5, 5] % (simulating a maximum

absolute noise level equal to 5 %). Subsequently, each variable value was multiplied with a

noise factor; for instance, for a randomly selected error of –4 %, the respective variable value

was multiplied with a noise factor equal to 0.96. The process was repeated for the noise ranges

of ±7 and ±10 %. Secondly, we wished to simulate adverse effects for the ANN3 by distorting

the shape of the input pressure wave. This was achieved by adding white Gaussian noise

assuming three signal-to-ratio (SNR) values, i.e. 40, 35, and 30 dB. Selection of the SNR values

was done experimentally so that an obvious distortion in the wave morphology is achieved

that could render the model incapable of making a correct prediction. A lower SNR value

would lead to an unrealistically signal variation which would be inappropriate to use and thus

would be discarded. A higher SNR value would make it easy for the model to yield a precise

estimation.

Statistical analysis

All data are presented as means and standard deviation (SD). The statistical analysis was

performed in Python (Python Software Foundation, Python Language Reference, version 3.6.8,

available at http://www.python.org). The accuracy between the estimates and the reference

values were evaluated using the Pearson’s correlation coefficient (r ) and the normalized root

mean square error (nRMSE). Bias and limits of agreement (LoA) (where the 95 % of errors are

expected to lie) were calculated using the Bland-Altman analysis [32]. The computed nRMSE

was based on the difference between the minimum and maximum values of the dependent

variable y and was computed as RMSE/(ymax -ymi n). Level of statistical significance was set

equal to 0.05.

8.3 Results

The population consisted of 1,087 (48 %) male participants and 1,169 (52 %) female partici-

pants. The distributions of the cardiovascular parameters of the study cohort (n = 2,256) are

presented in Table 8.4.
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Table 8.4 – Description of the cardiovascular characteristics and parameters of the study cohort
(n = 2,256).

Variable
mean±SD
(n = 2,256)

Age [years] 45.91±5.98
Height [cm] 169.18±8.82
Weight [kg] 73.65±14.45
Carotid SBP [mmHg] 130.96±10.90
Carotid DBP [mmHg] 77.36±16.83
Carotid PP [mmHg] 53.59±11.82
Mean arterial pressure [mmHg] 99.60±12.04
Cardiac output [L/min] 4.95±1.16
Heart rate [bpm] 60.35±8.94
Total arterial compliance [mL/mmHg] 1.00±0.32
Total peripheral resistance [mmHg.s/mL] 1.27±034
PDN [mmHg] 110.38±13.50
tDN [s] 0.38±0.05
Aupstr oke [mmHg.s] 26.21±7.00
As y stol i c [mmHg.s] 43.38±8.03
Adi astol i c [mmHg.s] 58.58±13.00
dP/dtmax [mmHg/s] 657.07±160.08
tdP/dtmax [s] 0.068±0.014

Table 8.5 – Regression statistics between the model-predicted and the reference CT data.

Model Slope
Intercept

[mL/mmHg]
r P-value

nRMSE
[%]

Bias (LoA)
[mL/mmHg]

LR1 0.71 0.29 0.81 <0.001 10.63
-0.00

(-0.35,0.35)

LR2 0.93 0.07 0.93 <0.001 6.13
0.01

(-0.21,0.22)

ANN1 0.77 0.24 0.83 <0.001 9.58
0.01

(-0.33, 0.34)

ANN2 0.97 0.05 0.96 <0.001 4.8
0.01

(-0.15, 0.18)

ANN3 0.73 0.28 0.83 <0.001 9.67
0.02

(-0.32, 0.36)

ANN4 0.68 0.28 0.77 <0.001 11.26
-0.04

(-0.43, 0.35)

ANN5 0.74 0.26 0.82 <0.001 9.9
0.01

(-0.34, 0.36)
Two-sided P-value for a hypothesis test whose null hypothesis is that the
slope is zero, using Wald Test with t-distribution of the test statistic.
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Table 8.6 – Permutation feature importances for the ANN1.

Feature +δRMSE [mL/mmHg] Feature +δRMSE [mL/mmHg]
PP 0.31±0.04 PDN 0.04±0.01
SBP 0.28±0.02 MAP 0.03±0.01
Adi astol i c 0.24±0.02 dP/dtmax 0.02±0.00
As y stol i c 0.14±0.02 HR 0.02±0.01
Weight 0.11±0.01 tdP/d tmax 0.02±0.01
DBP 0.07±0.01 Age 0.02±0.00
Height 0.05±0.01 tDN 0.01±0.00
Gender 0.04±0.01 Aupstr oke 0.01±0.01

Comparison between the model-predicted and reference data

The scatterplots and the Bland–Altman plots of the estimated CT for each of the models against

the ground truth are shown in Figures 8.2 and 8.3. Regression metrics for the agreement,

precision, and bias are aggregated in Table 8.5. The regression slopes were similar for the LR1,

ANN1, and ANN3 in which the demographic data were considered as inputs. Accuracy was

significantly increased for the models which used CO as an input feature (r ≥ 0.94). Variability

of the absolute errors between predicted and actual compliance values was low for the LR1,

ANN1, and ANN3. In all models, LoA were narrow and biases were reported to be close to

zero. Table 8.6 presents the feature importances of the input regressors for CT , respectively.

Among the inputs, PP, SBP, and Adi astol i c appeared to have the highest importance levels

(error increase was more than 0.20 mL/mmHg). On the other hand, PDN and Aupstr oke had

the lowest importance levels (error increased by 0.01 mL/mmHg). The ANN5 using only the 5

top-contributing features had a satisfactory performance similar to the one of ANN1 which

used all the extracted wave-based features and the performance of ANN3 which was fed with

the entire waveform and the demographical data (nRMSE was found to be close to 10 % and

correlation equal to 0.82).

Sensitivity to noise and variations in the wave morphology

An input carotid pressure wave with the simulated artificial noise is illustrated in Figure 8.5.

The addition of artificial noise affected the wave’s shape, harming the smoothness of the

curve and leading to variations in the peaks. We can observe that for an SNR = 30 dB, it

begins to become difficult to clearly distinguish the shape. As anticipated, the agreement and

correlation between the estimated CT and the reference CT decreased with the increase in the

noise level. Table 8.7 reports the correlation coefficients and normalized RMSE values as a

function of the noise levels for the two simulated experimental settings.
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Figure 8.2 – Comparison between the predicted and the reference CT data using LR1. Scat-
terplot and Bland–Altman plot between the predicted CT and the reference CT using the LR1
model. The solid line of the scatterplot represents equality. In Bland–Altman plot, limits of
agreement (LoA) are defined by the two horizontal dashed lines. Adapted from [26].

8.4 Discussion

This paper introduces a novel machine learning method for estimating CT . The findings

indicated that arterial compliance can be accurately predicted by exploiting the carotid blood

pressure waveform. This method relies on the raw information hidden in the carotid pulse

wave that can be unveiled via the sophisticated machine learning capacity. In addition, the

present study introduces an ANN estimator which is based on features extracted from the

carotid wave. These features appeared to be powerful predictors of CT . The major advantage

of a method for estimating CT from a single carotid pressure waveform is that it eliminates the

need for a flow or velocity recording which require complex and expensive echocardiographic

or magnetic resonance imaging procedures. Consequently, it provides a faster and more

convenient way for monitoring arterial compliance.

The CT together with the total vascular resistance are the two major parameters that describe

the global biomechanical properties of the arterial system. Modelling vasculature and hemo-

dynamical responses often require the estimation of CT , while other methods for minimally

invasive cardiac output monitoring (namely pulse contour analysis) are also dependent on CT
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Figure 8.3 – Comparison between the predicted and the reference CT data using ANN1. Scat-
terplot and Bland–Altman plot between the predicted CT and the reference CT using the ANN1
model. The solid line of the scatterplot represents equality. In Bland–Altman plot, limits of
agreement (LoA) are defined by the two horizontal dashed lines. Adapted from [26].

values [33]. Yet, despite the additional clinical utility of CT , current techniques for CT have

not entered the everyday clinical practice. This is mainly attributed to inherent limitations,

including methodological complexity and expensiveness.

Moreover, the lack of a common basis and guidelines has hampered the establishment of

CT as an outcome predictor. However, several studies have demonstrated that assessment

of CT is valuable not only for cardiovascular risk evaluation but also for assessment of the

relationship between structural and functional changes in the vascular system with respect to

its elasticity [14; 34]. Moreover, Haluska et al. stressed that derivation of CT adds incremental

benefit to Framingham risk scores in patients with intermediate cardiovascular risk [9]. Hence,

CT is becoming a valuable parameter in the clinical setting by providing additive value in

conjunction with other vascular characteristics [12] or by acting as a superior predictor over

current traditional techniques [9]. The suggested method could potentially facilitate the

further elucidation of the clinical utility of CT as a risk predictor.

The current study trained and tested two machine learning models of different nature, namely

a typical linear regressor, and an artificial neural network. There was not a significant vari-

ability in the errors among the two models for the feature-based configurations, i.e. LR1
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Figure 8.4 – Comparison between the predicted and the reference CT data using ANN3. Scat-
terplot and Bland–Altman plot between the predicted CT and the reference CT using the ANN3
model. The solid line of the scatterplot represents equality. In Bland–Altman plot, limits of
agreement (LoA) are defined by the two horizontal dashed lines. Adapted from [26].

and ANN1, (LoA were (-0.35,0.35) and (-0.33, 0.34) mL/mmHg). However, the LR1 could not

account for the nonlinear relationships between the inputs and the compliance and this led

to curvilinearity in the results’ plots. Importantly, there is much additive value offered by

the ANN estimator which has been proven capable of accurately predicting CT from the raw

blood pressure waveform. This approach could introduce a greatly promising method for

the medical community by reducing the cost and the complexity in assessing CT . Moreover,

as anticipated, the inclusion of CO in the input vector essentially increased the precision of

the results. Compliance is a measure of volume change against unit pressure change. Hence,

the two parameters are highly interdependent. The dependency in conjunction to the blood

pressure information allows for computing the one from the other. This is a principal applied

by several existing methods. In addition, providing that the PPM (used to derive the reference

CT ) utilizes the aortic flow for the CT calculation, introducing the aortic flow information to

the machine learning model would inarguably reduce the error. Nevertheless, our study’s

objective is to provide estimates of CT without the need for the aortic flow or velocity recording

(and thus CO).

It is of importance to recognize the contribution of each input to the prediction of CT . The PP
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Figure 8.5 – Carotid blood pressure waves after adding artificial noise. The noisy data are
presented in red solid lines and the original noise-free data in black dashed lines. Adapted
from [26].

was found to have the highest influence on the prediction error, namely 0.31±0.04 mL/mmHg

for CT values within a range of 0.3-2.1 mL/mmHg. This is highly anticipated given that PP

is essentially determined by the elastic properties of the aorta [35]. Due to the topological

proximity of the carotid artery to the aorta, the carotid PP constitutes a fair surrogate of

the aortic PP. Hence, the strong interdependence between the PP and CT is also in effect

for the carotid pressure. Moreover, one should not ignore the fact that the PPM, which was

applied for acquiring the compliance values, relies on an iterative process that yields the

CT with the best fit in terms of PP. The SBP also appeared to impact the accuracy of the

estimation by an error increase of 0.28±0.02 mL/mmHg. The PP and SBP were followed by

Adi astol i c and As y stol i c . The combination of the latter yields the entire area under the curve

whose measurement is involved in the arterial pulse contour analysis for CO estimation [33];

knowledge of MAP and a notion of CO allows for approximating arterial compliance. Moreover,

the substantial contribution of the Adi astol i c may be attributed to its association to the decay
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Table 8.7 – Correlation coefficients and nRMSE values as a function of the artificial noise level
in the distorted carotid pressure waves for the ANN1 and ANN3.

Model r nRMSE [%]
Noise level [%]

ANN1
±5 0.79 10.73
±7 0.78 11.11

±10 0.71 13.51
SNR [dB]

ANN3
40 0.8 10.34
35 0.79 10.76
30 0.75 12.36

time constant (τ = RCT ) whose concept it is employed by the AM for estimating compliance.

The demographic information, and in particular weight, had a high importance level for the CT

estimator. This was also observed from the reduced precision of the predictive model which

excluded the individual’s demographic data from the input vector (ANN4) where correlation

was decreased to 0.77. Arterial compliance has been shown to be highly dependent on arterial

geometry which is determined by the body size, and thus weight and height. When only

the most importance features were used in ANN5 (permutation importance higher than 0.1

mL/mmHg), the accuracy was remained similarly high as the one of the ANNs which used

either all the extracted features (ANN1) or all the wave points (ANN3). Therefore, it should not

be necessary to use a higher number of input features for the CT predictive models. Finally,

the lower importance levels of some inputs might be explained by the fact that the information

embedded in their values may be contained already in other inputs with higher importance

levels.

Estimation of cfPWV using the proposed methodology would yield a correlation equal to

0.6 between the estimated and the reference values (data not shown). It is likely that the

lower correlation is attributed to the fact that the method uses as input a waveform from a

single arterial site, while measurement of the foot-to-foot cfPWV requires waves from two

arterial locations. Nevertheless, cfPWV can be measured in an easy and non-invasive way with

satisfactory reproducibility, and hence further simplification of its acquisition would not add

tremendously to the current state of the art. In contrast, fast, convenient, and cost-efficient

determination of CT is still missing.

In this study, we chose to use a single carotid pressure waveform for estimating arterial

compliance. The rationale behind the use of a single wave relies on the current function of

the existing devices. The current commercial devices (e.g. SphygmoCor) collect multiple

recordings of the pressure wave for a specific time window and then yield an average blood

pressure wave for the subject under consideration. Ideally, our algorithm could be embedded

into such a device and provide the additional approximation of arterial compliance. In such
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a setting, a single carotid waveform would be sufficient. However, as variations may occur

across several beats of measurement, it is possible that the CT prediction is influenced. Yet,

the sensitivity analysis demonstrated that small alterations in the wave’s morphology due to

noise do not affect significantly the predictions for an SNR equal to 40 dB. Validation of the

methodology using multiple beats of carotid pressure remains to be conducted in order to

quantify the effect of such variations in vivo.

The BP waveform has been shown to be crucial for assessing the vascular state in the human.

It provides outstanding information on central hemodynamics, micro- and macrocirculation

crosstalk, as well as arterial stiffness, [2; 3; 9; 36; 37]. Moreover, signal processing techniques

are rapidly advancing allowing for creating a gold mine of physiological information hidden in

pressure blood waveform. In this study, we evaluated the performance of machine learning

models on revealing the hidden information related to arterial compliance in commonly used

pressure wave features. Furthermore, we tested the unveiling capacity of an ANN which was

fed with the raw pressure signal and received no guidance regarding the input features to

use for the training/testing process. Interestingly, the algorithm performed very satisfactorily

when the raw carotid waveform was prescribed to the ANN input layer. These findings indicate

the beginning of a new era where the machine learning algorithms are capable of revealing

more sophisticated piece of vascular information through learning by itself from the available

clinical data.

Undoubtedly, non-invasive health monitoring technology is on the frontiers of modern health-

care and it is bound to expand inside and beyond the clinical environment. Concurrently, the

rapid advance of wearable technologies is transforming the healthcare system on a global scale.

Blood pressure sensing devices aim to be essentially miniaturized whereas their function will

be highly assisted by pressure wave analysis techniques. In this context, reducing the required

measurements to only a single waveform in conjunction with the greatly promising potential

of signal processing techniques creates a unique opportunity for future use in the market.

In addition, medical consultation is expected to become available remotely at all times by

connecting to the data cloud where specialized clinicians will be interpreting the available

parameters.

Limitations

A main limitation of this study is that the values for CT , which were used as the ground truth,

were derived using the PPM. Unarguably, this value does not correspond to the actual arterial

compliance. Nonetheless, acquisition of the real arterial compliance would not be feasible

in an intact organism. In addition, the PPM has been shown to provide reliable compliance

estimations and, therefore, it constitutes a trustworthy alternative for validating our method

[14; 15; 18]. Another limitation is that the study population included individuals free of cardio-

vascular disease or pathology. It is not guaranteed that the developed models will be capable
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of making predictions for patients with, for instance, aortic valve stenosis, arrhythmias or

other pathologies. In future work, we aim to validate the proposed methodological framework

using such populations. Finally, it is well established that healthy aging and cardiovascular

diseases, such as hypertension and heart failure, are associated with increased arterial stiffness

[38; 39]. Therefore, a method which is capable of differentiating between healthy and disease

is highly desirable. At this initial stage, we demonstrated that accurate estimations of CT can

be yielded using our machine learning-based approach. Given that CT has been found to be

capable of differentiating between hypertensive, elderly and healthy individuals [10; 11; 12],

as a next step, we envision to evaluate the robustness of the proposed method for classifying

high-risk populations and finally verify its clinical significance in terms of risk stratification.

Conclusion

This paper introduces a novel artificial intelligence method to estimate the CT . The method

relies on exploiting the information provided by the carotid blood pressure waveform as well as

typical clinical variables (such as demographic data). Our results demonstrated that accurate

estimates of CT can be obtained following our methodology. The importance of the method

is based on the simplification of the technique offering easily applicable and convenient

monitoring of CT . Such an approach could provide promising applications which may be

integrated in wearable technologies and smartphones. Finally, the study further supports the

importance of arterial pulse waves in the assessment of cardiovascular health and suggests the

potentiality of machine learning in advancing the detection of clinical biomarkers in medicine.
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Abstract

Clinical and experimental evidence regarding the influence of HR on arterial stiffness and its

surrogate marker carotid-femoral pulse wave velocity (cfPWV) is conflicting. We aimed to

evaluate the effect of HR on cfPWV measurement under controlled hemodynamic conditions

and especially with respect to blood pressure (BP) that is a strong determinant of arterial

stiffness. Fifty-nine simulated cases were created using a previously validated in silico model.

For each case, cfPWV was measured at five HR values, 60, 70, 80, 90, and 100 bpm. With

increasing HR, we assessed cfPWV under two scenarios: with BP free to vary in response to

HR increase, and with aortic DBP (aDBP) fixed to its baseline value at 60 bpm, by modifying

total peripheral resistance accordingly. Further, we quantified the importance of arterial

compliance (CT ) on cfPWV changes caused by increasing HR. When BP was left free to vary

with HR, a significant HR-effect on cfPWV (0.66±0.24 m/s per 10 bpm, P-value < 0.001) was

observed. This effect was reduced to 0.21±0.14 m/s per 10 bpm (P-value = 0.048) when aDBP

was maintained fixed with increasing HR. The HR-effect on the BP-corrected cfPWV was higher
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in the case of low CT = 0.8±0.3 mL/mmHg (0.26±0.15 m/s per 10 bpm, P-value = 0.014) than

the case of higher CT = 1.7±0.5 mL/mmHg (0.16±0.07 m/s per 10 bpm, P-value = 0.045). Our

findings demonstrated that relatively small HR changes may only slightly affect the cfPWV.

Nevertheless, in cases wherein HR might vary to a greater extent, a more clinically significant

impact on cfPWV should be considered.
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9.1. Introduction

9.1 Introduction

Pulse wave velocity (PWV), defined as the propagation speed of the pulse wave through

the circulatory system, constitutes a significant and clinically pertinent index of arterial

stiffness [1]. A huge body of clinical evidence, using simple and reproducible non-invasive

techniques [2], indicates that arterial stiffness (as assessed via PWV measurement) is a strong,

independent predictor of cardiovascular morbidity and mortality in several populations [1;

3; 4; 5]. Measurement of carotid-femoral PWV (cfPWV) is considered as the gold-standard

non-invasive method for the assessment of aortic stiffness [6], and can be readily performed

by several non-invasive techniques and devices.

An increased variation in sequential cfPWV measurements may be often observed [7], due to

inherent physiological vascular and hemodynamic variations or/and measurement errors. A

parameter that has been questioned for affecting cfPWV is the heart rate (HR). Cross-sectional

population studies have demonstrated either no significant correlation [8] or a positive cor-

relation between cfPWV and resting HR [9; 10]. Albaladejo et al. [8] reported that there is

no significant rise in cfPWV when HR is increased. On the contrary, Lantelme et al. [10]

demonstrated that HR is an important factor of the intra-patient cfPWV changes in the elderly.

Nevertheless, those studies have investigated the potential effect of HR on cfPWV without

isolating the effect of the concurrent increase in blood pressure (BP) with increasing HR. In

addition, results from existing acute experimental studies have been also inconclusive [10].

Therefore, it is of utmost importance to investigate more thoroughly the BP-independent

cfPWV-HR relation; especially, now, that the clinical use of cfPWV is increasing [11; 12; 13].

The main objective of the present study was to evaluate and quantify the influence of HR on

cfPWV measurement, and determine potential hemodynamic conditions that modulate the

HR- cfPWV association. Furthermore, we aimed to quantify the potential impact of arterial

compliance on cfPWV changes caused by increasing HR.

9.2 Methods & materials

We used a dataset of virtual individuals with a variety of cardiovascular characteristics. Specifi-

cally, 59 virtual individuals were created using a generic 1-D model of the human cardiovascu-

lar system [14]. For every individual, the HR was increased at five levels, that is, 60, 70, 80, 90,

100 bpm and PWV was determined at each of them. BP at the ascending aorta and brachial

artery was also determined at each HR level. Finally, we calculated the stroke volume (SV) and

the mean aortic flow (cardiac output).

We performed two experiment series: with BP free to vary when HR was increased, and with BP

fixed to its baseline value (at 60 bpm). For this purpose, the aortic DBP (aDBP) was maintained

constant by altering the total peripheral resistance (TPR). Adjusting TPR compensated for the

HR-related changes in cardiac output and allowed us to maintain the pressure level constant.
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This was done to ensure that potential changes in cfPWV were the result of the change in HR

alone and not due to the expected BP increase.

Generation of the in silico population

We simulated 59 hemodynamic cases by running an in silico model of the cardiovasculature

using arbitrary sets of input parameters. The values’ ranges of the input parameters were

selected based on physiological data published in the literature (Table 9.1) [15; 16; 17; 18; 19;

20; 21; 22; 23]. The model that was adopted in the present study has been previously described

and validated against in vivo measurements [14; 24].

It comprises the main arteries of the systemic circulation, including a network of the cerebral

circulation and the coronary circulation. The governing equations of the model are acquired

by integration of the longitudinal momentum and continuity equations over the arterial cross-

section. Flow and pressure waves are obtained at an arterial segment-level by solving the

governing equations using an implicit finite-difference scheme. Concretely, the simulated

flow and pressure waveforms are provided in the form of a vector with respect to the time

duration of the cardiac cycle. The arteries are considered as long tapered tubes, and their

compliance is defined as a nonlinear function of pressure and location [15]. Nonlinearity and

more importantly for the purpose of this study viscoelasticity of the arterial wall is considered

following Holenstein et al. [25]. Distal vessels are terminated with three-element Windkessel

models to consider the resistance of the peripheral vasculature. Contractility of the left

ventricle is simulated with a time-varying elastance model [26; 27]. The HR is prescribed as

an input parameter to the model of the left ventricle. It should be noted that the model also

captures the variation of the ratio of systolic and diastolic duration in the presence of HR

changes. Namely, an increase in HR will result to an increase in the systole/diastole duration

ratio [28]. The dead volume (Vd ) and the time of maximal elastance were kept unchanged and

equal to the average values of Vd = 15 mL and tmax = 340 ms as reported previously [14; 29].

Arterial geometry was changed by adapting the height of the arterial tree, as well as the

diameter of the arterial segments in order to simulate different body types. The cardiovascular

parameters of the entire virtual study population are reported in Table 9.1.

Data analysis

The values of HR varied between 60 and 100bpm for each of the virtual cases. At an individual-

level at each HR level, cfPWV, BP (aortic and brachial), SV and mean aortic blood flow were

computed. The ‘measurements’ were performed for both scenarios, namely free-varying

pressure and fixed aortic BP.

The cfPWV was calculated by a foot-to-foot algorithm using the tangential method [30]. Pulse

transit time was computed between the carotid artery and the femoral artery. The method
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Table 9.1 – Cardiovascular parameters of the virtual study population (n = 59).

Parameter
Value

(n = 59) Reference
min max mean SD

Height [cm] 150.00 200.00 170.00 13.50 [22]
End-systolic elastance [mmHg/mL 1.14 3.48 2.24 0.60

[16; 17; 18]
End-diastolic elastance [mmHg/mL] 0.05 0.19 0.11 0.03
Venous pressure [mmHg] 9.46 22.57 16.17 3.29 [19]
Aortic diameter [cm] 1.91 3.98 2.74 1.44 [20; 21]
*Aortic distensibility [10−3/mmHg] 1.00 8.05 4.53 1.90

[22; 15]
*Brachial distensibility [10−3/mmHg] 0.40 3.23 1.82 0.76
TPR [mmHg.s/mL] 0.62 1.55 1.13 0.24 [23]
*The arterial wall distensibility and the respective lumen radius correspond to a reference
transmural pressure of 100 mmHg.

uses the intersection point of two tangents on the arterial pressure wave, that is the tangent

passing through the systolic upstroke and the horizontal line passing through the minimum

of the pressure wave. The travel length was determined by summation of the lengths of the

arterial segments within the transmission path, that is the relevant carotid-femoral path. Then,

the value of cfPWV was calculated by dividing the total travel length by the pulse transit time.

In addition, aortic SBP, DBP, mean arterial pressure (MAP) and pulse pressure (PP) were derived

from the pressure waveform at the aortic root. Brachial SBP, DBP, MAP and PP were obtained

by computing the pressure at the left brachial artery. SV was calculated from the area under

the curve of the aortic flow waveform. Mean aortic flow was derived from the mean value of

the flow waveform at the aortic root.

Blood pressure correction method

To isolate the direct HR effect on PWV from any consequent BP influence, we employed a

method to correct for BP; namely, to maintain constant the aortic DBP (aDBP). The aDBP was

chosen instead of MAP, as cfPWV was computed using the foot-to-foot method and thus, using

the diastolic points of the pulse wave (this point is further elaborated in the Discussion). In

this respect, the individual- specific TPR was adjusted. This was achieved by multiplying the

TPR with a scaling factor. A gradient-based optimization algorithm was employed to derive the

adjusted TPR. With increasing HR (from 60 to 100 bpm) in every individual, the optimization

algorithm estimated the optimal TPR that would allow aDBP to remain constant (equal to its

baseline value at 60 bpm) eliminating the expected rise in pressure. The tolerated error for

capturing aDBP was set to 0.01 %. Figure 9.1 provides the schematic representation of the

optimization process used to correct cfPWV measurement for BP changes. Once the algorithm

provided the corrected TPR, the 1-D model ran and produced the flow and pressure waves for
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every segment of the arterial tree. From the solution, we were able to obtain the quantities of

interest, including the corrected cfPWV.

Model 
parameters 

for casei

Solve 
1-D

model

Modify 
TPR

BP-corrected 
cfPWV

aDBP@HR=60 bpm

Simulated 
aDBP@HR>60 bpm Accurate 

aDBP?
YES

N
O

Figure 9.1 – Schematic representation of the optimization algorithm that corrects blood
pressure. aDBP, aortic DBP; BP, blood pressure; cfPWV, carotid-femoral pulse wave velocity;
TPR, total peripheral resistance. Adapted from [31].

Compliance-dependency of pulse wave velocity response to increasing heart rate

Further investigation was performed to quantify the importance of arterial compliance on

the cfPWV changes caused by increasing HR. The effect of HR on cfPWV was assessed for

two different levels of arterial stiffness. In this respect, the entire sample was divided into

two groups based on the total arterial compliance (CT ) to represent two different levels of

arterial stiffness, that is a more elastic tree (CT > 2.00 mL/mmHg) and a stiffer tree (CT < 2.00

mL/mmHg). The hemodynamical parameters of the two groups at baseline conditions, that is

60 bpm, are presented in Table 9.2. With increasing HR, the variable characteristics of the two

groups were assessed and compared.

Statistical analysis

The statistical analysis was performed in Python (Python Software Foundation, Python Lan-

guage Reference, version 3.6.8; http://www.python.org). One-way analysis of variance (ANOVA)

for repeated measures was used to determine the effect of HR levels on cfPWV, SBP, DBP, MAP,

SV and cardiac output (CO). Values were reported as mean±SD. Statistically significant differ-

ence was set at the level of P-value value less than 0.05.
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Table 9.2 – Hemodynamical parameters of the two groups with different levels of compliance
at baseline (HR = 60 bpm).

Variable@60bpm
Low arterial stiffness

CT = 1.7±0.5 mL/mmHg
(n1 = 28)

High arterial stiffness
CT = 0.8±0.3 mL/mmHg

(n2 = 31)
cfPWV [m/s] 8.28±0.78 10.67±1.27
Aortic SBP [mmHg] 116.12±24.24 138.05±29.92
Aortic DBP [mmHg] 79.66±14.61 74.69±20.73
Aortic PP [mmHg] 36.45±14.95 63.36±20.56
MAP [mmHg] 91.81±16.98 95.81±22.16
Brachial SBP [mmHg] 129.67±26.61 152.28±28.21
Brachial DBP [mmHg] 76.85±14.42 72.07±20.1
Brachial PP [mmHg] 52.82±19.49 80.22±19.35
Aorto-brachial PP amplification 1.47±0.08 1.3±0.13
Mean aortic flow [L/min] 5.29±1.72 5.05±1.2
Stroke volume [mL] 87.09±28.36 83.13±19.73

9.3 Results

The changes of the measured hemodynamical parameters of the entire population at the five

HR values are reported in Table 9.3.

Under free-varying pressure conditions, a gradual rise in cfPWV with respect to the HR increase

was observed (Figure 9.2, solid line). The values of cfPWV were reported to be equal to

9.54±1.60, 10.20±1.69, 10.83±1.84, 11.50±1.96 and 12.17±2.07 m/s at 60, 70, 80, 90 and 100

bpm, respectively. The difference between cfPWV@60bpm and cfPWV@100bpm was 2.64±0.70

m/s (27.73±6.26 % with respect to the baseline cfPWV@60bpm). When correction for aDBP

was performed, the cfPWVBPcor r ected increase was reduced to 9.54±1.60, 9.66±1.60, 9.92±1.69,

10.14±1.75 and 10.37±1.81 m/s (P-value = 0.048) at 60, 70, 80, 90 and 100 bpm, respectively

(Figure 9.2, dashed line). The respective differences between the BP-corrected cfPWV@60bpm

and the corrected cfPWV@100bpm was 0.84±0.36 m/s (8.71±3.12 % with respect to the baseline

cfPWV@60bpm).

The concomitant HR-related changes on MAP were reported as 93.91±19.80, 102.21±21.51,

110.08±22.98, 118.17±24.52 and 126.00±26.10 mmHg for the five HR values (from 60 to 100

bpm), respectively. A significant effect of HR changes on MAP was observed, with a total

average increase in MAP equal to 32.09±7.73 mmHg (P-value < 0.001) for a total increase in

HR by 40 bpm. Aortic SBP and DBP were increased with the increase in HR from 60 to 100bpm

by 23.90±7.40 mmHg (P-value < 0.001) and 36.18±9.13 (P-value < 0.001) mmHg, respectively.

The increase in aDBP was markedly higher resulting to a decrease in aortic PP [by 12.28±7.93

mmHg (P-value = 0.015)]. Similar response was observed in the brachial BP with a less

significant effect on the PP decrease (by 11.11±6.64 mmHg, P-value = 0.041). Consequently, PP
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Table 9.3 – Hemodynamical characteristics of the entire population with increasing heart rate
(from 60 to 100 bpm).
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9.3. Results

Table 9.4 – Relative changes in hemodynamical variables at 100 bpm with respect to their
baseline values at 60 bpm for the two groups with different levels of arterial compliance.

Variable
Low arterial stiffness

CT = 1.7±0.5 mL/mmHg
(n1 = 28)

High arterial stiffness
CT = 0.8±0.3 mL/mmHg

(n2 = 31)
*δ(cfPWV) [m/s] 2.32±0.53 2.92±0.72
†δ(cfPWVcor r ected ) [m/s] 0.64±0.19 1.02±0.38
δ(aSBP) [mmHg] 26.51±6.45 21.54±7.5
δ(aDBP [mmHg] 36.21±8.76 36.16±9.59
δ(aPP) [mmHg] -9.7±4.78 -14.61±9.44
δ(MAP) [mmHg] 32.97±7.74 31.28±7.77
δ(brSBP) [mmHg] 26.62±6.27 21.09±8.04
δ(brDBP) [mmHg] 35.69±8.37 34.03±9.21
δ(brPP) [mmHg] -9.07±6.07 -12.95±6.69
δ(a-brPPampl) 0.26±0.25 0.14±0.13
δ(CO) [L/min] 1.63±0.78 1.42±0.45
δ(SV) [mL] -18.62±4.66 -19.07±6.71
*For free-varying blood pressure; †For fixed aortic diastolic blood pressure.

amplification from the aorta to the brachial artery was increased by 14.15±13.67 % (P-value <

0.001) for the 40-bpm increase in HR. Finally, SV was decreased by 18.85±5.78 mL (P-value <

0.001), whereas mean aortic flow was increased by 1.52±0.63 L/min (P-value < 0.001) due to

the 40-bpm total increase in HR.

Influence of arterial stiffness on the heart rate induced changes in carotid-femoral

pulse wave velocity and blood pressure

Table 9.4 summarizes the total net change between the maximal HR (100 bpm) and the

baseline HR (60bpm) in every variable for the two groups of arterial stiffness. For the group

with higher values of arterial compliance, the effect of HR on cfPWV was found to be equal to

0.58±0.18 m/s per 10bpm (P-value < 0.001) and 0.16±0.07 m/s per 10bpm (P-value = 0.045),

under the free-varying pressure scenario and the fixed aDBP scenario, respectively. When

the group with stiffer arterial system was assessed, the corresponding quantified effects were

reported to be 0.73±0.25 m/s per 10bpm (P-value < 0.001) and 0.26±0.15 m/s per 10 bpm

(P-value = 0.014) for the free-varying pressure and the fixed DBP scenarios, respectively. It

appeared that the increase in HR had a greater effect on PP at the lower than higher arterial

compliance level (Table 9.4). Particularly, a 10-bpm increase in HR resulted to a decrease in

PP by 2.42±1.22 mmHg (P-value = 0.077) at CT = 1.7±0.5 mL/mmHg (group with low arterial

stiffness). The same HR increase led to a PP reduction equal to 3.65±2.39mmHg (P-value =

0.034) at CT = 0.8±0.3 mL/mmHg (group with high arterial stiffness). Similar response was

reported for the brachial PP (Table 9.4). SV was reduced at a slightly greater extend at the low
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Figure 9.2 – Changes in the carotid-femoral pulse wave velocity with increasing heart rate
under two scenarios: (1) with free-varying blood pressure (solid line) and (2) with fixed DBP
(dashed line). Adapted from [31].

compliance group in comparison to the higher compliance group; this had as a result that CO

experienced a smaller increase in the case of high than the case of low arterial stiffness.

9.4 Discussion

The present study evaluated the influence of HR on cfPWV on 59 in silico individuals. We

leveraged the simulation capacity of a previously validated mathematical model of the cardio-

vasculature in order to create a complete hemodynamical dataset accessing information that

is not easily obtained in a real clinical setting. Mathematical modelling allowed for isolating

the inherent HR effect independent of any HR-induced systemic variations, that is BP changes.

It was demonstrated that a 10-bpm increase in HR imposes a minimal direct effect on cfPWV

in the total sample. However, in cases of higher HR increase, the accumulative effect may lead

to a clinically significant change in cfPWV measurements. These HR effects on cfPWV were

amplified in cases with increased arterial stiffness.

Despite previous works that investigated the effect of HR on cfPWV, the inherent mechanisms
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that are responsible for the variation in arterial stiffness with HR are yet to be elucidated. A

possible explanation for the alteration in the arterial stiffness with HR has been related mostly

to the concomitant changes in BP with increasing HR and in a lesser degree to the viscoelastic

properties of the arterial walls. Previous studies have suggested that it is the HR-induced

rise in BP that incites cfPWV to increase, rather than a direct influence from the HR per se

[8; 32]. Here, we achieved to isolate the BP-dependency on the cfPWV changes by employing a

correction technique that maintained aDBP constant (while HR increased). The rationale for

choosing the aDBP to be controlled is due to the fact that measurement of cfPWV using the

foot-to-foot method is associated with the vicinity of the diastolic foot, and thus aDBP. This

choice is further supported both theoretically and empirically by previous studies [33; 34; 35].

On the basis of our findings, the HR effect on cfPWV was reported to be equal to 0.66±0.24

m/s per 10 bpm in the presence of BP-free response. When the BP correction method was

employed to derive the corrected cfPWV, the respective effect was reported to be 0.21±0.14

m/s per 10 bpm. This effect was found to be in accordance with previously published data

from the work of Tan et al. [36], wherein they also reported an effect equal to approximately

0.20 m/s per 10bpm (P-value < 0.001). We also performed our analysis by keeping the aortic

SBP (aSBP) constant. In this case, the effect of HR on cfPWV was equal to 0.40 m/s per 10

bpm instead of 0.21 m/s per 10 bpm when the aDBP was maintained constant. This is rather

expected if we consider that the increase in aSBP is smaller than the increase in aDBP with

increased HR, and, as a result, the BP correction is greater when we choose to maintain fixed

aDBP.

Increased HR was associated with increased MAP and decreased aortic and peripheral PP

(brachial PP), as expected. The decrease in central PP was found to be greater in magnitude

than the decrease in brachial PP, and thus, an increase in PP amplification was observed. These

observations have also been acknowledged in previous studies [8]. It was also noted that the

increase in DBP, especially, lead to the PP reduction. Nevertheless, in our data, the increase

of PP amplification was less prominent (approximately 14 %, P-value < 0.001). According to

Pichler et al. [37], PP amplification is related to BP level; the higher the BP, the lower the BP

amplification. In our study, BP was relatively higher than other published data [8; 38] in which

a higher increase in PP amplification was observed. Moreover, increasing HR led to a decrease

in SV, which was rather expected considering that SV is a major determinant of PP. In contrast,

CO was increased due to the large increases in HR.

The correction methodology that was employed in the current study interferes with the TPR,

which is the main systemic determinant of aDBP [39]. An increase in TPR leads to an increase

in BP level, and thus to increased arterial stiffness based on the nonlinear pressure-compliance

relationship. By employing a correction technique, it is exactly this BP increase that we wish

to control. In practice, by decreasing BP, we expect that TPR will also decrease, and vice versa.

In our in silico model, the modification of TPR allows us to achieve the control of BP per
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se. Importantly, a prominent element of our approach is that our manoeuvre is not applied

directly to the aorta. On the contrary, we only modify locally the peripheral sites (resistances)

without imposing any intervention on the properties of the global arterial tree. Possible

interference due to the influence of TPR on cfPWV (using the foot-to-foot method) has been

evaluated by previous studies demonstrating low correlations between the two quantities

[40; 41].

It should be noted that, although our study population presented a concurrent increase in BP

with increased HR, this observation is not systematic in the literature. In studies wherein HR

was changed acutely through pacing, despite the fact that some scientists reported a rise in

cfPWV in the presence of a significant parallel increase in BP [9; 10], others observed no BP

rise with increased HR [8; 42; 43; 44]. This existing inconsistency makes it hard to determine

whether HR, additionally, contributed to the increase in cfPWV independently of BP. Our

objective was to precisely quantify the part of cfPWV increase that is caused intrinsically due to

the HR changes, and to isolate the cfPWV increase due to the BP increase. Thus, we simulated

and compared the two different phenotypes, namely where BP was deliberately allowed to

vary in response to HR changes that physiologically occur in some individuals, and where BP

was controlled so that it remains unchanged when HR varies, which is also apparent in some

humans.

It is undeniable that the effect of HR on cfPWV measurement has been a subject of high con-

troversy. In a previous study, Albaladejo et al. [8] have showed that increased HR (introduced

acutely by pacing) leads to a rise in cfPWV accompanied with an increase in BP. The authors

also reported an increase in PP amplification that was not, however, associated with a change

in aortic stiffness. The cfPWV change was rather attributed to the interaction between reduced

SV and modified wave reflection sites. Nevertheless, their study includes only 11 individuals,

whereas the cfPWV was evaluated under only three averaged levels (low, medium, high), which

were not predetermined.

On the contrary, Lantelme et al. [10] have claimed that HR changes exert a significant effect on

cfPWV measurement in an elderly population (n = 22) in the absence of BP changes. However,

concerns have been raised [45] against the Complior technique [46], which was employed

to measure cfPWV in this study. It is likely that increasing HR can affect the shape of the

pressure waveform. The sensitivity of the cfPWV estimation method (Complior apparatus) on

the waveform characteristics may explain the discrepancies between their findings and other

clinical investigations, as already suggested by Hayward et al. [45]. These discrepancies do

not allow us to derive a clear understanding on the HR impact on arterial stiffness measure-

ment. Furthermore, evidence from the aforementioned studies was based on cross-sectional

population data in which the intrinsic effect of HR on cfPWV cannot be isolated.

Of particular interest is the study by Tan et al. [36] in which the HR effect on cfPWV was evalu-

ated by isolating the corresponding influence of BP. The cfPWV measurement was corrected for
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BP using three methods: a statistical method, an empirical formula and a model-based tech-

nique. This study was the first one to assess the HR-related changes in cfPWV regardless of BP

variation. Following a similar principle to the one adopted in our study, they quantified the HR

effect on cfPWV by assuming a constant aDBP. The authors performed the correction method

on a study population of 52 individuals and calculated an effect equal to 0.2 m/s per 10bpm.

In another study, Tan et al. [47] reviewed and analysed the findings of several published

experimental studies investigating the acute effects of HR changes on PWV measurements.

They found that the average HR dependency of cfPWV, weighted by study sample size, was

0.30 m/s per 10bpm (or 0.03 m/s/bpm) [47], which is in line with our findings. Furthermore,

in that study, it was revealed that epidemiological studies exploring the association between

resting HR and cfPWV regardless of BP levels have failed to converge, with approximately just

half of the examined studies reporting a significant BP-independent association between HR

and cfPWV [47]. In this respect, our study provides additional evidence showing that HR is

a relevant factor that should be considered when arterial stiffness is assessed via the cfPWV

measurement.

In addition to the quantification of the HR effect on cfPWV, our study investigated the HR

dependency on cfPWV for different levels of arterial stiffness. Our results showed that the

cfPWV increase was 40 % higher for stiffer (CT = 0.8±0.3 mL/mmHg) than more compliant

arteries (CT = 1.7±0.5 mL/mmHg). This is rather expected if we consider that a more compliant

artery will present a lower increase in pressure due to a volume rise than the increase presented

by a stiffer artery. At the same time, aorto-brachial PP amplification was lower in the group of

high stiffness (1.9 times smaller than the group of low stiffness). Evidence from previous work

[48; 49] have demonstrated that, in general, central PP appears to be lower (more compliant

aorta) than peripheral PP (stiffer periphery). This PP difference often disappears with ageing

and hypertension, wherein the arterial tree and especially the elastic arteries (i.e. proximal

aorta) becomes stiffer [50].

Moreover, it must be highlighted that, for the total increase in HR by 40 bpm, the consequent

increase in cfPWV (under constant BP levels) by approximately 0.64 and 1.02 m/s for low and

high arterial stiffness levels, respectively, is remarkable and clinically relevant. Even more

impressive is the respective increase in cfPWV per 40 bpm increase under free BP-response

(which is a more realistic scenario), namely by 2.32 m/s for low and 2.92 m/s for high arterial

stiffness levels, respectively. This is mostly based on existing evidence relating these cfPWV

changes with the corresponding theoretical increase in the cardiovascular (CV) and mortality-

risk, as predicted by published prospective, longitudinal, studies. Specifically, a previous

meta-analysis exploring the predictive value of cfPWV demonstrated that an increase in aortic

PWV by 1.0 m/s corresponds to an age, sex and risk factor adjusted risk increase of 14, 15 and

15 % in total CV events, CV mortality and all-cause mortality, respectively [5]. Finally, our

findings provide additional evidence in support of the scientific statement from the American

Heart Association [51] recommending that HR should be recorded at the time of an arterial
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stiffness measurement and taken into consideration in analyses involving PWV.

Furthermore, correction of the cfPWV measurement for resting HR may have significant clini-

cal implications in the occurrence of pharmacologically induced changes in cardiac rhythm.

Concretely, several patients suffering from high resting HR are in need for antiarrhythmic

drugs to restore a normal heart beat. Assessment of the cardiovascular state in these patients

is crucial [52; 53]. However, the medication targeting on HR decrease is likely to affect arterial

stiffness and thus, lower the measured cfPWV value. A lower HR would appear concurrently

with a lower cfPWV value, thus hiding the potential cardiovascular risk associated with arterial

stiffness. Employment of a correction method would allow for the corrected characterization

of arterial stiffness by isolating the potential pharmacologically induced changes in HR and

thus optimizing the accuracy of cardiovascular risk assessment and the predictive value of

cfPWV.

Limitations

A few study limitations should be acknowledged. Nevertheless,synthetic data can be repre-

sentative of the properties of the real clinical measurements, while they allow for controlling

the distribution of rare but relevant conditions or events. Translation of the results from any

in silico study to real conditions and patients cannot be direct, and the extrapolation and

application of the theoretical results to clinical practice should be made with great caution. On

the contrary, in silico models allow the control of specific parameters in highly multifactorial

problems, which is impossible to be achieved under in vivo conditions. Finally, the in silico

model that was used in this study has been thoroughly validated against in vivo data and

provides realistic representations of the physiological signals.

Conclusion

In conclusion, the present study estimated the direct effect of HR on cfPWV independently

of the concomitant BP variations. Overall, the BP-independent effect of HR on cfPWV was

estimated to be approximately 0.16 m/s per 10 bpm and 0.26 per 10 bpm in cases with

decreased and increased arterial stiffness, respectively. Although small variations in HR

appear to have a minimal effect on the cfPWV measurement, a larger increase in HR may lead

to a more significant physiological change in cfPWV and, hence, to a higher cardiovascular

risk. In this respect, our study provided a strong and clinically relevant background for the

establishment of cfPWV correction for HR changes (especially for individuals with increased

arterial stiffness) and also for further examination of the combined predictive role of both

cfPWV and HR.
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Chapter 10

10 Conclusions

10.1 Summary of thesis achievements

The aim of this thesis was to develop and assess the performance of techniques for monitoring

key cardiovascular parameters, and more precisely aortic systolic blood pressure (aSBP), car-

diac output (CO) or stroke volume (SV), end-systolic elastance (Ees), total arterial compliance

(CT ), and aortic characteristic impedance (Zao). Chapters 2 to 8 presented original method-

ologies to address this aim. Finally, Chapter 9 reported evidence on the influence of heart rate

(HR) on the assessment of arterial stiffness. The achievements of the thesis are summarised in

the following paragraphs.

10.1.1 Non-invasive estimation of aortic hemodynamics from readily available

clinical data

Estimation of aortic hemodynamics is key in disease diagnosis and effective patient manage-

ment [31; 6]. Chapter 2 introduced a novel inverse problem-solving method for estimating

aSBP and CO using non-invasive, easily obtained clinical measurements. The method re-

lied on the partial adjustment of a generic one-dimensional (1-D) arterial model using the

non-invasive brachial systolic and diastolic blood pressures and carotid-femoral pulse wave

velocity, which are easily obtained in a clinical setting. The 1-D model of the arterial tree,

which was adopted, has been thoroughly validated in vivo and provides realistic flow and pres-

sure waveforms. Identifiability analysis allowed for identifying the most sensitive parameters

that drived the variability in the model outputs. Subsequently, the fusion of the physics-based

model and the measured data was achieved via an optimization process. In particular, the ar-

terial 1-D model parameters were adjusted so that the model-simulated data fit the measured
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data and thus render the generic model closer to a patient-specific model. After describing

the concept and processes undertaken to develop the algorithm, the method was tested on

twenty healthy adults for the purposes of this thesis. Doppler ultrasound-derived CO was

used as ground truth for validating the accuracy of the proposed methodology. The in vivo

evaluation suggested that this novel method predicts aSBP and CO with good accuracy and

agreement with the reference values (r = 0.98, RMSE = 2.46 mmHg and r = 0.91, RMSE = 0.36

L/min, respectively).

In Chapter 3, the inverse method, which was presented and described in Chapter 2, was

validated using a larger dataset (n=144) from the Anglo-Cardiff Collaborative Trial [37]. This

allowed for an extensive validation of the proposed method across a wide range of age groups.

The ground truth for the aortic flow data was derived from phase-contrast magnetic resonance

imaging (PC-MRI), which is the gold-standard non-invasive method for measuring flow. Fol-

lowing the promising results of the study described in Chapter 2, the validity and accuracy

of the inverse method in estimating SV was anew verified, achieving again a satisfactory cor-

relation and accuracy (r = 0.83, RMSE = 16 mL). Furthermore, we investigated whether the

performance of the inverse method for SV estimation was superior to the traditional statistical

approach of multilinear regression. The inverse method achieved higher accuracy in com-

parison to the traditional linear regression approach (r = 0.72, RMSE = 14 mL), highlighting

the importance of physics-based mathematical modelling in developing predictive tools for

hemodynamical monitoring. Overall, this work demonstrated that creating a version of the

generalized arterial tree model closer to each individual’s standards can potentially enhance

the performance of aSBP and CO (or SV) prediction.

Addressing the same aim, a part of Chapter 4 presented another method for predicting central

hemodynamics (i.e. aSBP and CO) from non-invasive brachial (cuff) blood pressure and cfPWV,

but this time using a machine learning regression pipeline. Different regression models were

trained and tested using an in silico dataset which was generated using the previously validated

1-D cardiovascular model. An extensive range of hemodynamical conditions was simulated

by varying the model’s parameters. The results indicated that the use of non-invasive arm cuff

pressure and PWV alone allows for the precise estimation of aSBP and CO (r = 0.99, RMSE =

3.13 mmHg, and r = 0.92, RMSE = 0.34 L/min, respectively). Moreover, model-derived aSBP

compared to in vivo data in a large human cohort (n = 783) and achieved high precision (r =

0.97, RMSE = 3.53 mmHg). Finally, transfer learning was performed for the aSBP estimator and

yielded accurate estimates of aSBP (r = 0.94, RMSE = 5.34 mmHg), meeting the international

standards of the European Society of Hypertension International Protocol [62]. In summary,

the findings of this study indicated that this novel machine learning-based methodology

has potential for improving the non-invasive monitoring of aortic hemodynamics using

unintrusive, readily available, standard clinical measurements.
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10.1.2 Machine learning for the prediction of left ventricular contractility

Assessment of left ventricular (LV) contractility via measuring Ees has been shown to be

valuable in physiological studies and clinical practice. This thesis introduced three original

methods for estimating LV Ees . The selection of the method in estimating Ees may be dictated

by the scope and the available data and apparatus of the specific setting.

Chapter 4 proposed a machine learning regression method for predicting cardiac Ees from

readily available clinical data. The training and testing of the models was conducted using

in silico data. The findings demonstrated that the use of non-invasive arm cuff pressure and

PWV is not sufficient for a precise Ees prediction. The estimated Ees can be greatly improved

when ejection fraction (EF) is used as an additional input in the prediction model (r = 0.91,

RMSE = 0.15 mmHg/mL). Nonetheless, accurate interpretation of EF renders essential the

additional knowledge of physical determinants of myocardial contraction, namely, the preload

and afterload [12; 13]. As a result, the inclusion of EF may compromise the clinical relevance

of the estimated Ees .

In an effort to discard the EF measurement from the required inputs, we formulated the

research question whether EF could be replaced by other cardiac functional parameters, e.g.

electrical or acoustic signals of cardiac events, that are related to the LV contractility in a

direct or indirect manner. In this respect, Chapter 5 presented an alternative, novel artificial

intelligence method for estimating Ees , which utilized systolic time intervals. Results from our

in silico study provided evidence that accurate estimates of Ees could be yielded from arm

cuff pressure data and contractility-related timing parameters using a scalable data-driven

approach. The regression results showed that cuff pressure in conjunction with systolic time

intervals achieved a low test error and can capture the left ventricular Ees value with sufficient

accuracy (r = 0.92, RMSE = 0.3 mmHg/mL). The systolic time intervals appeared to be a

promising source of information for assessing Ees and their usefulness should be emphasized.

Interestingly, this methodology could easily be turned into a useful clinical application, where

systolic time intervals could be easily obtained using ECG and a precise electronic stethoscope.

This finding creates a rather promising proof-of-evidence towards the non-invasive estimation

of Ees reducing the complexity and the cost of the technique for acquiring the necessary

measurements. The proposed methodological concept could be easily integrated in a medical

device such as a smart stethoscope.

The final proposed methodology suggested in Chapter 6, pertains to the prediction of the

cardiac contractility index of Ees from a sole pressure waveform that can be measured, for

instance, at the brachial artery. The performance of the trained neural networks was tested

using an independent set of the virtual population. The results demonstrated that neural

networks are promising for predicting cardiac contractility. Specifically, we found that the

arterial pulse wave alone may be informative for the characterization of Ees (r = 0.86 and RMSE

= 0.27 mmHg/mL). In particular, the CNN configuration combining the peripheral pressure
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wave and its time derivative provided higher precision (r = 0.97 and RMSE = 0.13 mmHg/mL).

With the increasing availability of clinical data, signals and images sourced from various

avenues of medicine and healthcare, the application of artificial intelligence for analysis and

interpretation of medical data grows rapidly. Deep learning offers a promising potential in

exploring new methods for cardiac monitoring by deciphering key information from arterial

pulse waves. In this study, we leveraged the capacity of CNN models in order to evaluate LV

Ees from a single arterial pulse wave. Such potential can open new directives in digital health

and potentially suggest new markers for cardiac monitoring purposes.

10.1.3 Can machine learning improve the assessment of arterial elasticity?

Chapter 7 presented a non-invasive simple-to-use machine learning estimator for predicting

CT and Zao . The proposed approach incorporates cuff blood pressure and regional pulse wave

velocity data, along with a versatile and scalable machine learning pipeline. Our findings

provide evidence that data related to regional arterial stiffness can be rather informative

for obtaining a global description of arterial elasticity. In particular, it was observed that

the machine learning approach achieved significantly higher accuracy (r = 0.95 and RMSE

= 0.16 mL/mmHg for CT and r = 0.9 and RMSE = 0.006 mmHg.s/mL for Zao , respectively)

in comparison to prior methods, especially for Zao . However, the main advantage of the

proposed method pertains to its simplicity and convenience (for both the patient and the

physician). The existing techniques require non-invasive, yet expensive and complex, flow or

velocity measurements for evaluating Zao and CT . The proposed approach constitutes a step

forward to the non-invasive screening of elastic vascular properties in humans by exploiting

easily obtained measurements. This study could introduce a valuable tool for assessing arterial

stiffness reducing the cost and the complexity of the required measuring techniques.

Chapter 8 takes a step further and explores the possibility of deriving CT from a single carotid

blood pressure wave. The method relies on exploiting the information provided by the carotid

blood pressure waveform as well as typical clinical variables (such as demographical data). Our

results demonstrated that accurate estimates of CT can be obtained following our methodology

(r = 0.83 and RMSE = 0.17 mL/mmHg). The importance of the method is based on the

simplification of the technique offering easily applicable and convenient monitoring of CT .

Importantly, it was evidenced that CT , which is usually estimated using both pressure and flow

waveforms, can be accurately derived by the use of the pressure wave alone. Such an approach

could offer promising applications which may be integrated into wearable technologies and

smartphones and could potentially facilitate easily applicable and convenient monitoring

of CT . Finally, the study further supported the importance of arterial pulse waves in the

assessment of cardiovascular health and suggested the potentiality of machine learning in

advancing the detection of clinical biomarkers in medicine.
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10.1.4 Disentangling the mystery behind heart rate’s effect on pulse wave velocity

measurement

Chapter 9 presented a study investigating the direct effect of HR on carotid-femoral pulse wave

velocity (cfPWV) independently of the concomitant blood pressure variations. Overall, the

blood pressure-independent effect of HR on cfPWV was estimated to be approximately 0.16

m/s per 10 bpm and 0.26 per 10 bpm in cases with decreased and increased arterial stiffness,

respectively. Although small variations in HR appear to have a minimal effect on the cfPWV

measurement, a larger increase in HR may lead to a more significant physiological change

in cfPWV. Precisely, it must be highlighted that, for the total increase in HR by 40 bpm, the

consequent increase in cfPWV (under constant BP levels) by approximately 0.64 and 1.02 m/s

for low and high arterial stiffness levels, respectively, is remarkable and potentially clinically

relevant. Even more impressive is the respective increase in cfPWV per 40 bpm increase under

free BP-response (which is a more realistic scenario), namely by 2.32 m/s for low and 2.92

m/s for high arterial stiffness levels, respectively. Consequently, our findings recommended

that HR should be recorded at the time of an arterial stiffness measurement and taken into

consideration in analyses involving PWV. In this respect, our study provided a strong and

clinically relevant background for the establishment of cfPWV correction for HR changes

(especially for individuals with increased arterial stiffness) and also for further examination of

the combined predictive role of both cfPWV and HR.

10.2 Future perspectives

The inverse problem-solving method provides a non-invasive, reliable, and cost-efficient way

to assess central hemodynamics, without the need for population-based transfer functions

(aortic blood pressure) or invasive calibration techniques (mean aortic blood flow). The es-

timates of aSBP and CO or SV have been successfully validated against reference data from

existing commercial central blood pressure monitors, e.g. Mobil-O-Graph and SphygmoCor,

and both an ultrasound and PC-MRI protocol (CO or SV), respectively. Further clinical vali-

dation against gold standards measurements remains to be performed in order to verify that

the proposed technique may be employed for non-invasive aSBP and CO monitoring in the

real clinical setting. In addition, an interesting extension to our study would be the additional

implementation of the method for assessing the inter-patient variability of CO in critically

ill and hemodynamically unstable patients. This would also require the incorporation of a

closed-loop model of the cardiovascular system. Finally, future work could investigate the

age- and gender-related variation of the aortic flow wave morphology. Further personalization

of the generic aortic flow waveform could potentially improve the performance and clinical

relevance of the method.

In this thesis, the initial goal was to provide evidence on the utility of machine learning in as-
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sessing vascular ageing. Due to the inherent limitations in collecting large datasets of invasive

gold-standard data, some of the proposed machine learning methodologies were evaluated in

silico. Following validation on in vivo data, the proposed computational tools may provide

valuable alternative techniques for the non-invasive prediction of aortic hemodynamics and

LV Ees using easily obtained clinical measurements. In addition, in vivo validation of the artifi-

cial intelligence-based estimation method for Ees (presented in Chapter 5) will be followed by

the development of a prototype device for implementing the acquisition of the systolic time

intervals, namely a smart stethoscope.

Similarly, a regression pipeline was introduced for predicting Zao and CT from commonly

acquired surrogates of arterial stiffness (i.e. regional PWV measurements). Although the in

silico validation allows for comparing the estimated data to the actual values of Zao and CT ,

the proposed concept should be validated using clinical data over a wide range of age groups

and across different populations.

The waveform-based estimator (Chapter 8) has been proven capable of providing accurate

estimates of CT in a large human cohort (n = 2,256). A main limitation of this study is that

the study population included individuals free of cardiovascular disease or pathology. In

future work, we aim to validate the methodology against patients with cardiovascular disease.

It is well established that healthy aging and cardiovascular diseases, such as hypertension

and heart failure, are associated with increased arterial stiffness [39]. Hence, it is critically

important that our method is capable of differentiating between healthy and diseased patient

groups. As a next step, we envision to evaluate the robustness of the method for classifying

high-risk populations and finally verify its clinical significance in terms of risk stratification.

Finally, the influence of HR on PWV is especially relevant to people with pathologies or

diseases. For instance, people with diabetes are confronted with accelerated vascular ageing.

More specifically, there is a unique diabetic complication interfering with neural control of

the cardiovascular system that is cardiac autonomic neuropathy (CAN). Cardinal feature of

CAN is decreased HR variability at the early stages leading ultimately to resting tachycardia.

Current absence of the CAN model poses an intrinsic limitation in simulating this condition.

Complementary analysis using a model simulating CAN could provide valuable insights into

this area of research.

Closing remarks

In this dissertation, physics-based modelling and machine learning provided pertinent ex-

amples of the value of engineering in the non-invasive cardiovascular monitoring. Rapid

advancements in m-Health suggest the expansion of health monitoring beyond the clinical

environment and, hence, render indispensable the employment of the available engineering

apparatus. The human interaction via smartphones and wearable devices is steadily grow-
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ing, transforming the healthcare scheme across the world. The greatest leap forward in the

estimation of cardiovascular parameters will be made with the advent of future wearable tech-

nologies, which may capture and harness multi-modal sensorial data, which in turn will allow

for remote screening on an everyday basis. The use of consumer devices to assess vascular

health presents several opportunities [148]: these devices can be used away from the clinical

setting, and may facilitate assessment in a range of additional situations (e.g. after exercise,

whilst asleep, and during potentially stressful daily activities). Importantly, consumer devices

can be used remotely, an important consideration in the light of COVID-19. A critical stepping

stone for the establishment of the developed methodologies is the proper and inclusive design

of clinical trials on large human cohorts, which may permit their standardization and, finally,

lead to their adoption in the real world.
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