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"All our knowledge begins with the senses, proceeds then to the understanding, and ends with
reason. There is nothing higher than reason."
— Immanuel Kant (1724-1804)

"La souffrance physique on la subit, la souffrance morale on la choisit."

— Fric-Emmanuel Schmitt, Oscar et la dame rose (2002)
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Abstract

In a progressively aging population, it is of utmost importance to develop reliable, non-
invasive, and cost-effective tools to estimate biomarkers that can be indicative of cardiovas-
cular risk. Clinical parameters directly measured in the heart or the aorta are crucial for the
diagnosis and management of disease. However, their clinical use is severely hampered by
their invasive nature, cost, or need for special equipment. Aortic systolic blood pressure
(aSBP), cardiac output (CO), end-systolic elastance (E,s), and arterial stiffness provide valu-
able information about the cardiovascular state in humans, and are strongly associated with
clinical outcomes. This thesis presents original predictive algorithms suitable for estimating
such cardiovascular biomarkers from commonly measured non-invasive clinical data.

The first aim of this thesis is to develop and validate methods to estimate central hemodynam-
ics, such as aSBP and CO. Firstly, a novel inverse problem-solving method is introduced to
estimate aSBP and CO from non-invasive measurements of cuff pressure and carotid-femoral
pulse wave velocity (cfPWV). The method relies on the adjustment of a previously validated
one-dimensional arterial tree model. Assessment of the accuracy is achieved by implementing
the algorithm, initially, on a small cohort (n = 20), and, thereafter, using a large cohort with
a wide range of age groups from the Anglo-Cardiff Collaborative Trial (n = 144). The second
approach involves the machine learning-based estimation of aSBP and CO using again cuff
pressure and cfPWV. Validation of the method on in silico data shows that machine learning
offers a greatly accurate alternative for monitoring aSBP and CO. Moreover, transfer learning
allows for evaluating the performance of the aSBP estimator in vivo, with results showing
satisfactory agreement between the predicted and the reference data.

The second objective of this thesis entails the development and validation of a gamut of
different machine learning frameworks for the non-invasive prediction of E¢;. First, a machine
learning model is trained and tested using as inputs cuff pressure and cfPWV. The importance
of incorporating ejection fraction (EF) as additional input for estimating E.; is also assessed.
Results indicate that E,s cannot be predicted from pressure-based data alone. The addition
of the EF information greatly improves the estimated E.;. Alternatively, we propose a novel
artificial intelligence-based approach to estimate E,.; using the information embedded in
clinically relevant systolic time intervals. A training/testing scheme is developed using virtual
subjects (n = 4,645) from a previously validated in silico model. The evaluation provides
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very promising results which permit to deduce that this approach constitutes a step towards
the development of an easy and clinically applicable method for assessing left ventricular
systolic function. Furthermore, this work aims to provide evidence on the potential in using
the morphology of the brachial blood pressure waveform and convolution neural networks
for predicting E.s using 3,748 in silico subjects. The arterial blood pressure wave appears to
be a promising source of information for assessing E,;. Predictions are found to be in good
agreement with the reference E,; values over an extensive range of left ventricular contractility
values and loading conditions.

The third objective is to improve in vivo assessment of aortic characteristic impedance (Z,,)
and total arterial compliance (Cr). Given that regional PWV measurements are non-invasive
and clinically available, we present a non-invasive method for estimating Z,, and C7 using
cuff pressure, cfPWV, and carotid-radial PWV via regression analysis. In silico validation using
3,818 subjects yields high accuracy for both Z,, and C7 estimators, verifying that the method
may offer a valuable tool for assessing arterial stiffness, while reducing the cost and the com-
plexity of the existing techniques.

As a step forward, we introduce a non-invasive method to estimate Cr from a single carotid
waveform using artificial neural networks. The proposed methodology is appraised using the
large human cohort (n = 2,256) of the Asklepios study. Precise estimates of Cr are yielded,
indicating that such an approach could offer promising applications, ranging from fast and
cost-efficient hemodynamical monitoring by the physician to integration in wearable tech-
nologies.

Finally, in view of the conflicting clinical and experimental evidence regarding the influence
of heart rate (HR) on arterial stiffness and its surrogate marker cfPWV, the last stride of this
research is to evaluate and quantify the effect of HR on cfPWV measurement under controlled
hemodynamic conditions, and especially with respect to blood pressure (BP) that is a strong
determinant of arterial stiffness. The findings conclude that large variations of HR may have a
clinically significant impact on cfPWYV, and correction of PWV measurement with respect to
BP may be considered.

In conclusion, this dissertation shows that physics-based modelling and machine learning
are valuable for developing and validating novel, non-invasive health monitoring algorithms.
The high performance of the proposed algorithms for predicting hemodynamical and cardiac
parameters from routinely collected non-invasive data suggests that it is feasible to improve
the current state of the art of monitoring tools for cardiovascular events, while reducing com-
plexity and cost.

Keywords: non-invasive monitoring, central hemodynamics, cardiac contractility, aortic pres-
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Résumé

Dans une société avec une population vieillissante, il est primordial de développer des outils
fiables, non-invasifs et rentables afin d’identifier les biomarqueurs révélateurs d'un risque
cardiovasculaire. Les parametres cliniques mesurés directement dans le coeur ou I’aorte sont
cruciaux pour le diagnostic et la gestion de la maladie. Cependant, leur utilisation clinique
est gravement entravée par leur nature invasive, leur cotit ou la nécessité d'un équipement
spécial. La pression artérielle systolique aortique (aSBP), le débit cardiaque (CO), I'élastance
télésystolique (E¢;) et les indices de rigidité artérielle fournissent des informations précieuses
sur I'état cardiovasculaire du sujet, et sont fortement corrélés aux résultats cliniques. Cette
these propose des algorithmes prédictifs originaux afin d’estimer ces biomarqueurs cardiovas-
culaires tout en utilisant des données cliniques non-invasives simples.

Le premier objectif de cette these est de développer et de valider des méthodes pour estimer
I’hémodynamique centrale, telles que la aSBP et le CO. Dans ce but, une nouvelle méthode
de résolution de problemes inverses est introduite afin d’estimer la aSBP et le CO a par-
tir de mesures non-invasives comme la pression du brassard et la vitesse d’'onde de pouls
carotide-fémorale (cfPWV). La méthode repose sur I'ajustement d'un modele d’arbre artériel
unidimensionnel préalablement validé. I’évaluation de I’exactitude est réalisée en mettant
en ceuvre l'algorithme, initialement sur une petite cohorte (n = 20), et, par la suite, en utili-
sant une grande cohorte comprenant divers groupes d’age provenant de |'essai collaboratif
Anglo-Cardiff (n = 144). La deuxiéme approche implique I'estimation basée sur 'apprentissage
automatique de I'aSBP et du CO en utilisant a nouveau la pression du brassard et le cfPWV. La
validation de la méthode sur des données in silico montre que I'apprentissage automatique
offre une alternative tres précise pour la surveillance des aSBP et CO. L'apprentissage par
transfert (transfer learning) permit d’évaluer les performances de 1'aSBP in vivo, avec des
résultats significatifs démontrant la vraisemblance entre les données prédites et les données
de référence.

Le second objectif est le développement et la validation d'une gamme de différents cadres
d’apprentissage automatique pour la prédiction non-invasive de E,;. Pour cela, un modeéle
d’apprentissage automatique est formé et testé en utilisant comme entrées la pression du
brassard et le cfPWV. Limportance d’incorporer la fraction d’éjection (EF) comme entrée sup-
plémentaire pour estimer E. est également évaluée. Les résultats indiquent que Es ne peut
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pas étre prédit a partir des seules données basées sur des données liées a la pression. L'ajout de
I'information EF grandement améliore la E,; estimé. Alternativement, une nouvelle approche
basée sur l'intelligence artificielle pour estimer E,; en utilisant les informations intégrées
dans des intervalles de temps systoliques cliniquement pertinents est proposée. Un schéma d’
entrainement/test est développé en utilisant des sujets virtuels (n = 4,645) a partir d'un modele
précédemment validé in silico. Cette évaluation fournit des résultats trés encourageants per-
mettant de déduire que cette approche est une premiere étape vers le développement d'une
méthode facile et cliniquement applicable pour évaluer la fonction systolique ventriculaire
gauche. Enfin, ce travail fournit des preuves du potentiel de I'utilisation de la morphologie
de 'onde de la pression artérielle brachiale et des réseaux neuronaux a convolution pour
prédire E. en utilisant 3,748 sujets in silico. En effet, 'onde de pression artérielle apparait
comme une source d'information prometteuse pour évaluer E.;. Les prédictions faites se sont
avérées proches des valeurs de référence E,; sur une large gamme de valeurs de contractilité
ventriculaire gauche et de conditions de charge.

Le troisiéme objectif est d’améliorer I’évaluation in vivo de 'impédance caractéristique aor-
tique (Z4,) et de la compliance artérielle totale (C7). Etant donné que les mesures régionales
de la PWV sont non-invasives et disponibles en clinique, nous présentons une méthode
non-invasive pour estimer Z,, et Cr en utilisant la pression du brassard, la cfPWV et la PWV
carotide-radiale via une analyse de régression. La validation in silico utilisant 3,818 sujets
donne une grande précision pour les estimateurs Z,, et Cr, démontrant que la méthode
peut offrir un outil précieux pour évaluer la rigidité artérielle tout en réduisant le cofit et la
complexité des techniques existantes.

En outre, nous introduisons une méthode non-invasive pour estimer C7 a partir d'une seule
signal d’onde de la pression artérielle carotidienne en utilisant des réseaux de neurones
artificiels. La méthodologie proposée est évaluée en utilisant la grande cohorte (n = 2,256)
de I'étude Asklepios. Des estimations précises de Ct sont produites indiquant qu'une telle
approche peut étre applicable a de nombreuses fins allant de la surveillance hémodynamique
rapide et rentable par le médecin jusqu’a son intégration dans des technologies portables.

Finalement, compte tenu des preuves cliniques et expérimentales contradictoires concernant
Iinfluence de la HR sur la rigidité artérielle et de son marqueur de substitution cfPWV, la
derniére étape de cette recherche est d’évaluer 'effet de 1a HR sur la mesure de la cfPWV dans
des conditions hémodynamiques controlées, et en particulier, en ce qui concerne la pression
artérielle, déterminante pour 1’évaluation de la rigidité artérielle. Les résultats concluons
que de grandes variations de la fréquence cardiaque peuvent avoir un impact cliniquement
significatif sur la cfPWV, et une correction de la mesure de la PWV par rapport a la pression
artérielle doit probablement étre envisagée.
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En conclusion, cette theése démontre que la modélisation basée sur la physique et I'appren-
tissage automatique peuvent servir a développer et valider de nouveaux algorithmes a des
fins de surveillance non-invasives de la santé. Les performances des algorithmes pour prédire
les parametres hémodynamiques et cardiaques, a partir de données non-invasives collectées
périodiquement, suggerent qu’il est possible d’améliorer I’état de I'art actuel des outils de
surveillance des événements cardiovasculaires tout en réduisant leur complexité et leur cofit.

Mots clés : surveillance non-invasive, hémodynamique centrale, contractilité cardiaque, pres-
sion aortique, débit cardiaque, élastance télésystolique, compliance artérielle, impédance
aortique, vitesse de I’'onde de pouls, modélisation informatique, modélisation prédictive,
résolution de problemes inverse, apprentissage automatique, analyse de régression , réseaux
de neurones artificiels, forét d’arbres décisionnels, gradient boosting
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[Teptindm

e évav mpoodeuTxd ynedoxovta TAnduoud, 1 oavantuln oloToTwY, U ENEYPATIXGOY X0l
OLXOVOUIXE TPOGLTWYV ERYUAELWY Yo TNV exTiunom PLOBETMY TOou xoEdlary YELXoU Xxv8UVOoU
elvon uioTne onuacioc. Luyxexpiuéva, UEAETES €y 0uV BElEEL TS Ol XAIXES TOUEAUETEOL TTOU
ueTpvTow aneuieiog oty xoEdtd 1 TNV aoeTY CUPBHANOUY EEUEETIXG OTNV OTOTEAECUOTI-
AOTEEY OLAYVWOT) Xo BLoyelplom) TNG xoediay YEWXc vooou. §26Tdc0o, 1 xhvixr) ulodétnon
TWV TOPUUETEWY aLTOY UToPadulleton onuavTxd e€outlog Tne TapeuSotinig Toug Puomg, TOU
%00TOUC 1) TNG avdyxng yio axplf3o xou e€etdixeupévo efomhiond. H aoptiny) cuctohixn aptn-
ptaxt| wieon (aSBP), 1 xapdlor) mopoyy| (CO), 1 tehixr| cuctohiny| ehacTixdtnTa (Ees) xou ot
deinteg opTnptaxiic Suoxaudiog TaEéyouY TOAITIUES TANEOPORIES OYETIXG UE TNV XAUTAC TAUOT
TOU XUEOLXYYELIXOU GUC TAUATOS GTOV AVUPWTO, EVE GUVOEOVTAL LOY VRS UE XAWVIXY TEQLO TA-
wxd. H napoloa didaxtopixr diatet3y) mpotelvel TpwTdTuToug TeoYVeo Tixols ahyoptduoug
XATIAANAOUC Yiot TNV EXTIUNGT) TETOLWY XAROLY YELUXODY BLODEXTMY Y PTOYLOTOLWMVTAS EVREWS
olordéotua dedopéva Tar omolar umopoly va cUAMeYYoLY pe e0X0A0 xou un eMEUPutind TEOTO

07O XAVIXO TEPYBEANOV.

O mpdtog otdyoc Tne mapoloag epyaciog elvon 1 avanTTUEN Xou EMXVEWOT HEYOBWY Yol TNV
EXTIUNON AEVTPXADY ALLODLVAUIXWOY TUPUUETEWY, Xl CUYXEXELWWEVA, TNe aSBP xou tng CO.
Kotapyde, mapovoidloupe pior xawvotoua pédodoc avtiotpogpne eniluone TeofAnudtwy e
oxond TNy extiunon tng aSBP xou tng CO and un emeuPatinés UETENOES TUECNC UAVOETOG
xon ToryOTNTag TaAUxol xopoatog (CfPWV). Ewwdtepa, n uédodoc Baoileton otnv npocap-
HOYT) EVOC TROTNYOUUEVKS ETUXUPWHUEVOL HOVOOLAG TUTOU UOVTENOU apTnploxol dévtpou. H
a&lohdynon tne axpeifeloc g pedodou TEAYUATOTOLEITAL UE TNV EQUPUOYT Tou ahyoplduou,
apEYLxd, O Lol Uixer] opdda eVAMX®Y edehovttv (n = 20) xaL, OTr CUVEYELY, YENOULOTOL-
OVTOG L0l UEYAAT, OO0 UTOXEWEVLY (N = 144) £vOC EVPEOUS PACUATOS NALXLUXDY OUSOMY.
H dedtepn npotewvouevn pédodog mepihouSdver v extiunon tng aSBP xa tng CO uéow
UMYX LGNGO YPNOLLOTIOWOVTAS, OHOIS UE TEONYOLUEVKS, Bedouéva Tieong LovogTog
xar cfPWV. H in silico emxOpwon tng pedddou delyver 6Tl 1 unyovixt| pddnon npocpépet
wlot a€LOTO TN VAR TIXY Yia TNV Topoxorolinon tng aSBP xow tng CO. Ilapddinia, 7
ueTapopd udinone (transfer learning) emitpénet TNy alloAdYNOY TNE AMOBOCOTE TOU EXTYNTY
nc aSBP oe in vivo xhivixd dedouéva, ye o anoteAécuata va 6ty vouv eonpeTing cuupwvio

xa axpifBetar HETUEY TV EXTIUOUEVLY TYOV Xl TV TEOYUNTIXGY TYOY oVIpoeds.
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O Bebtepog otdY0C NS epyaoiog apopd TNV AVATTUEN Xl EQPUPUOYY| ML YXOUAS Blapo-
eETXOVY Thactwy unyavixic udinone yioe ) un eneufotiny mpolAedn tne Ees. Apyixd,
EVOL LOVTENO UMY OVIXAC UAINomG eEXTOUOEVETOL Xl BOXIUACETAL YENOWOTOUDVTAS WS O TOLYEL
€l0600L UeTphoelg Tieong uavoétag oto Bepaylova xan cfPWV. ¥to mioioio tne epyoaoiog,
exTdToL, eniong, N ONUAVTIXOTNTO TNG EVOWUATKOONG Tou xhdopatoc eEdinone (EF) wc
Te6oUETNG E16OB0L Yl Tov UTohoYiopd TN Ees. Ta anotedéoparta delyvouv mwe tar Oe-
dopéva and PETPNOELC apTneloxng Tieong Bev emapxoLy yio TNV axel3y) extiunon tng Ees.
Evtoltolg, n eminpécietn nanpogoplo mou eiodyel To EF BeATIOVEL ONuavTnd TiC EXTIUHOELS
¢ Ees. Evodhoxtind oe authv tnv te)vixn, mpoteiveton uio tpitn mpocéyyion Paclouévn,
eX VEOU, OE TEYVNTH vonuoolvn Yo Tov utohoyloud tng Ees ypnowonowwviag, authiv
(Qopd, TNV TANEOPOEI TOU EUTEPLEYETOL OE XAWLXA GUVAPY| GUC TOMXE YPOVIXY. DLUC THUNTA.
‘Eva povtého exnaidevone/doxtudy avantiooeton yenolonowdvtag in silico unoxelpevo (n =
4,645) Tou ToEAYOVTOL ATO EVHL TROTYOLUEVWS ETUXUPMOUEVO UTOAOYIG TIXO LOVTEAO PEUG TOV.
Ta eupldpato e a€loAdyNone UTodEVOOLY EEAUPETINY CUVAPEL UETOEY TWV EXTIUACENY
X0l TOV TEOYUOTIXWY TYOV XL, €T0L, GUVABETOL TS 1) TEOCEYYLoT auTH anotehel Evar friua
UTPOCTA TEOC TNV AVAmTUEN MG AMAAS Xl XAVIXE EQOEUOCLUNG UeVodoL Yl TNV olo-
AOYNOT TNE CLUCTOMXTC AclTovpYlag TNE aploTeprc xothlag. TEhog, uio BlapopeTixt| TEY VXY
emBLOXEL Vo EpELYNTEL TNV BuvatdtnTa TEoBAedNe Tng Ees amd ohdxhnern tn popgporoyia
NG XUPATOROPPHS TNG Peaytoviag TECNE, OE GLYOLACUS UE TNV UTOAOYLOTIXY| oYL TOU To-
EEYOLY TA EVPEWS YVWOTA VELpWVIXY BixTua. To xlua apTnelaxrc Tleong amodexvieTon la
mholola Ty TANEOQPORELMY Yiot TNV olOAOYNON TNC CUCTOATIXOTNTAS TNS PO TEPNS XOL-
Mag. Ewduotepa, domotdveton 6Tt ol tpoPBAédec tne Ees elvan wiaktepa axpifeic yio éva
€LED PACUAL TYLWY GUC TAATIXOTNTAS TNE 0PI TEPNS XOLALG, xaddS Xt DLUPORETIXWY PORTIWV.

Emnmiéov, we tpitoc atdyoc opileton 1 Bertinon tng xhwixnc a&lohdynong tne odvietng
avtiotaong e aopTAS (Zao) XU TNS CUVOAXTC apTNELIXNS cUUHOEEWoTS (Cr). Acdouévou
OTL oL ToTEG PeTENoElc TNS PWV elvon un emepfBatinég xon xhivixd dueco Slodéctues, epriu-
Beoe yior un emepPotin u€dodo yio TNy exTUNc TN Zao xou NS Cr YEeNOWOTOWOVTAC TUEST)
pavogtag, cfPWV xou xapwtidoaxtivix) PWV xa eqopuolwvtag avdiuon noiwdpounone. H
in silico emxpwon tng uedddou yenoiponotdvtos 3,818 exxovixd utoxelueva anodidel PN
oxp{BeLa Yior TI¢ EXTYWOUEVES TWES TG0 TNE Zgo 600 xou Tng Cr. To amoteréopata cuvnyo-
eolV 670 YEYOVOS OTL 1) Topolca UEV0B0C EVOEYETAL VoL ATOTEAEGEL VOl TOAUTIUO EQYUAELD
Yoo Ty extiunon e aptnetoc duoxoudlag, UELOVOVTAS TaUTOYEOVA TO XOGTOS XL TNV

TOAUTAOXOTNTO TV UPLG TAUEVWY TEYVIXOV.

Y1 ouvéyela, topouctdloupe wor un enepfotiny pédodo yio Tnv extiunon e Cr and uia
MELOVOUEVT) XUUATOPOR(T ATNRLIXNE TUECTIC XUPOTIOUS YENOLLOTOLOVTAS TEYVNTY VEUPWVL-
% Sixtuo. H mpotewvdpevn yedodohoyio aftohoyeiton adlonoiwdvtag éva ueydio thnduouo
UYLV evihixwy (n=2,256) and tn ueAétn tou Asklepios. Xuyxexpuuévo, Topotneeiton UPNAY
axp{Bela oTic extiunoec g Cr, YEYOVOC TOU UTOBEIXVUEL TS Lol TETOL TPOGEYYLoT Vo
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UTOPOUGCE VoL TROCPEREL TOAG UTOCYOUEVES TEYVOROYWXES EqapuoyEs. TEtoleg eqopuoyeg
Yo unopoloay Vo GUUTERLAGBOUY TEYVOROYIEC YRNYORNC XAl OLXOVOULXTG OUUOBUVOLXAG T
poxohoLUNONE Amd TOV (810 TO YLTEO, AAAAL Xol EPUPUOYES TTOU EVOWOUATMVOLY OV TOLYES
uedodoug oe YopnTéc TEYVOROYIES, OTWS EEUTVOL PONOYLA 1) HAAEC CUGKEVES.

Téhog, ev OPEL TOV AVTIXPOUOUEVKDY XAVIXWDY X0l TELRUUATIXWDY GTOYEIWY OYETXE UE TNV
enidpaon tou HP otnv aptnetaxy) duoxoudla xar tov unoxatdotato deixtn tou cfPWV, to
teheutaio Briuc auTthAg TN €peuvag TpaypateYETAL TNV a€LOAOYNOT Xl TOCOTIXOTOINCY TNS
enidpaone Tou HP ot pétenon e cfPWV und eheyyodueveg aupoduvauinéc cuvIixes, xou
Widtepa o oyéon Ue apTneloxt| Teor mou amotehel Evay 1oyued xadoploTind TapdyovTa
e apTnetog Suoxoaudlac. Bdoel twv eupnudtey Yog, cuuTEpUfVOUUE OTL OL UEYHAES Blo-
xuudvoelg tou HP unopel va €youv xhwvixd onpavtixy enidpacn otnv cfPWV xo, dpa, 7
otopdwon e pétenone e PWV we mpog tnv aptnetaxt| tieor umopet vo xprdel ovaryxola

o€ TETOLEC TEPIMTAOELS.

Ev xatoocheldr, auth n SwtpBr Selyvel 0TL o JOVTEAD QUOXTG Xal 1) Uy avixy| exudinon
amoTEAOUV TOAOTYO EpYOAEil Yior TNV aVATTUEN X TNV EMX0PWOT| VEWY, U1 ETEUBATIXDV
alyopiduwy topaxololinong tne uyelag. Exeivo mou ofilel vo onueiwiel elvon mwe to gp-
YOoAelol QUTE ELOAYWVTAL YO TEWTY POEE GTNY TOEUXOAOVINCNEC HALOLXLYYELUXWY G TOLYEIWY
X0l TUEEYOUV GNHAVTIXEG DLYVATOTNTES WS TEO¢ TN Bedtiwon Tou ouyxexpiévou Touéa. o
eWdXd, oL emBOCEC TwV ahyopldunmy Yo TNV TEOBAEYN TWV UUOBLVOULXDY X0l XUEBLAXDY
TOUEUUETEWY AT ToL U] ETEUSATIXG BEGOUEV UTOONAWVOLY OTL vl EPLXTO VoL BEATIOCOUNE
TG TEEYOVOES TEYVOROYIEC TapaxohoVINCNG TV XAUEBLXYYELXMDY CUUPBAVTWY, EVE) UEWWDVO-

VTOC TAUTOY POV TNV TOAUTAOXOTNTA XAl TO XOGTOEC TOUC.

AéZeic-xhedid: un eneuotiny mopoxohoUncT), XEVTEXG aLodLVAUIXE GTolyEld, xoEdLoY
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Chapter 1

Introduction

1.1 Motivation

Maintaining a healthy vascular state is the cornerstone of human longevity. Cardiac and
vascular diseases remain among the leading causes of hospitalization and morbidity in the
western world (approximately 18 million deaths per year, representing 30 % of all global
deaths) [1]. Cardiovascular diseases constitute a group of disorders of the heart and blood
vessels among which are coronary heart disease, cerebrovascular disease, and peripheral
arterial disease. Adverse conditions such as these are detrimental to patients as they increase
morbidity and mortality, and prolong hospital stay [2; 3; 4]. In addition, adverse events have a
significant impact on healthcare costs and resources.

Chronological age is a major risk factor for cardiovascular disease. While age-related arterial
damage occurs predominantly in later life, there is high inter-individual variability, with some
displaying early vascular ageing [5]. This has led to the development of the concept of vascular
age, which may be better linked to the prognosis of cardiovascular disease [6]. Whereas
chronological aging is related to the passage of time, vascular aging relates to the decline in
arterial function.

In a progressively aging world population, it is of utmost importance to define the biomarkers
that accurately reflect the state of vascular ageing in order to improve the detection and
assessment of cardiovascular disease. Clinical parameters directly measured in the heart or
at the root of the aorta are crucial for early detection of vascular age, diagnosis, prognosis,
treatment, and management of the disease. But despite their diagnostic importance, their
clinical use is severely hampered by their invasive nature, cost, or need for special equipment.
Therefore, there is an unmet need for reliable, convenient, non-invasive, and cost-efficient
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predictive technologies to assist the clinician with cardiovascular monitoring.

The overall goal of this thesis is to establish biomedical predictive models for cardiovascular
monitoring and assessment in order to aid clinical decision-making for cardiovascular disease.
Our vision is to transform the clinical monitoring environment and offer solutions to facilitate
the acquisition of valuable but, until now, difficult to obtain biomarkers. Precisely, this work
focuses on major cardiovascular biomarkers, including aortic systolic blood pressure, cardiac
output, end-systolic elastance, total arterial compliance, aortic characteristic impedance, and
arterial stiffness, given the wealth of evidence that they can capture age-related changes and

pathologies and predict clinical outcomes.

1.2 Cardiovascular monitoring

In recent years, cardiovascular risk assessment has been developed into a prominent area of
research and has risen to the forefront of efficient management of patients at risk of develop-
ing cardiovascular disease. Monitoring of biomarkers for the vascular and cardiac function
is crucial for cardiovascular disease identification, treatment planning, and assessment of
therapy response.

Although many factors contribute to the incidence and progression of cardiovascular disease,
adverse outcomes are ultimately associated with a failure or ineffectiveness of the biomechan-
ical system to deliver oxygenated blood to organs and tissues. It is to be noted that the key
biomechanical properties of the heart and the circulatory system, including cardiac contrac-
tion, arterio-ventricular coupling, large artery stiffness, and microvasculature, influence the

morphology of pressure and flow waves in blood vessels [7].

An arterial wave can be termed as a time-wise change in pressure or flow that propagates
along a blood vessel. Pressure and flow waveforms result from the superposition of waves
that pass by an arterial location, with each wave causing an increment or decrement in the
resulted waveform. Arterial waves of pressure and flow contain a wealth of information on
the cardiovascular system and their measurement has become the cornerstone of current
advancements in research and technology. Importantly, pressure and flow waveforms allow
for the derivation of numerous cardiovascular parameters, such as heart rate, systolic blood
pressure, cardiac output, peripheral resistance, arterial stiffness, respiration, and many more,

which can be informative of disease initiation or/and progression.

Pulse wave analysis has introduced a multitude of new invasive and non-invasive biomark-
ers which have been tested in order to determine their clinical utility in the stratification
of cardiovascular risk. Several pulse wave analysis techniques rely solely on the pressure
wave, while others harness both the pressure and flow information. Circulating markers of
endothelial function and inflammation have been identified as useful markers in the diagnosis
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of disease, as well as disease monitoring, progression, and risk assessment [8; 9; 10]. In addi-
tion, technologies assessing structural and functional parameters have been evaluated with
regard to their clinical value in risk assessment [10]. However, less attention has been given to
other equally important parameters like total systemic compliance and aortic characteristic
impedance, which are major determinants of cardiac afterload and, in consequence, arterial
blood pressure [11].

Moreover, central hemodynamical quantities, such as cardiac output and central (aortic)
pressure, have been generally shown to be more powerful predictors of clinical outcomes than
corresponding measurements obtained in the peripheral arteries such as the radial, femoral or
brachial arteries [12; 13]. Critically ill or intensive care unit patients often require continuous
assessment of cardiac output for diagnostic purposes or for guiding therapeutic interventions
[14; 15; 16], whereas several studies have shown the pathophysiological importance of cen-
tral systolic blood pressure as the critical index for diagnosis and preventing cardiovascular
diseases [17; 18; 19].

Although a great number of the monitoring methods are currently established in the clinical
setting, their use is severely hampered by their invasive nature, cost, need for special equip-
ment and training, or inapplicability to sensitive age groups [20]. In addition, the majority of
the existing techniques cannot be used outside the clinic rendering cardiovascular monitoring

unfeasible after hospital discharge.

Therefore, there is a demand for a new generation of non-invasive methods and corresponding
devices that will provide clinical insights on cardiovascular health, inside and outside of the
clinical setting. Such efforts should focus on non-invasive technologies which have the
potential to transform cardiovascular assessment enabling monitoring feasible outside the
hospital, reducing hospitalization periods, and essentially decreasing the staff-to-patient ratio
[21; 22].

In the next section, we briefly review current techniques for measuring blood pressure and
flow/velocity waveforms. Subsequently, we cover some of the most well-established tech-
niques that use the measured pressure or/and flow waves for estimating key cardiovascular
parameters. The section concludes with some considerations with respect to the effect of
cardiac frequency on the assessment of arterial stiffness.

Measurement of blood pressure

The gold-standard measurement for acquiring the blood pressure waveform is invasive, and
it is performed either with a micromanometer-tipped catheter or fluid-filled catheter and
external manometer [7; 23]. Micromanometer-tipped catheters have an excellent frequency
response and provide a high fidelity waveform, but they are expensive. Fluid-filled catheter
configurations are less expensive; however, their performance can be poor and should be
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tested to ensure that the waveform is faithfully captured [7]. A common drawback of such
systems pertains to damping which can often occur in the case of an improperly flushed
catheter. Importantly, the clinical use of these catheter-based systems is severely limited in the
routine examination due to its invasive nature and its associated complications of bleeding,
thrombosis, and infection.

Applanation tonometry and sphygmomanometry offer non-invasive alternatives for mea-
suring the arterial blood pressure waveform. Applanation tonometry involves slightly com-
pressing against bone over a superficial artery with a pen-like pressure transducer (Figure 1.1)
[24; 25]. Although the technique is relatively easy to learn, it requires some experience from
the operator for attaining the correct sensor position during the measurement. Applanation
tonometry is commonly applied on the radial artery, as well as in other locations, including
carotid or femoral arteries, but with less adequate performance [7]. The acquired signal is
typically calibrated using the conventional brachial cuff pressures, which, however, may in-
volve errors due to cuff pressure inaccuracies and pulse amplification from the brachial site
to the radial site [26; 27]. A sphygmomanometer is a device that composes of an inflatable
rubber cuff, which is wrapped around the arm (brachial artery) (Figure 1.2). A bulb inflates
the cuff and a valve releases pressure. Currently, digital sphygmomanometers are automated,
providing blood pressure readings without needing someone to operate the device. However,
convenience comes at the expense of accuracy in the pressure measurement. The newest tech-
nologies have introduced cuff-based devices for other arterial locations, such as carotid and
femoral arteries (e.g. SphygmoCor EXCEL). While being fully non-invasive and cost-efficient, it
should be noted that both applanation tonometry and sphygmomanometry cannot be applied
to every arterial location, such as locations which are covered by thick layers of tissue or bones
(e.g. the aorta).

Measurement of blood flow/velocity

The gold-standard for invasive flow measurement is perivascular flow probes which use
transit-time ultrasound methods. In humans, the use of flow probe is limited to the clinical
assessment of bypass grafts [28], whereas invasive arterial wave analysis is usually performed
using blood velocity measurements from Doppler flow wires which measure velocity, rather
than flow (e.g. Philips Volcano ComboWire) [29].

Phase-contrast magnetic resonance imaging (PC-MRI) is considered as the gold-standard
non-invasive method for measuring flow. PC-MRI involves the motion of magnetic spins
through a magnetic field gradient which enables velocity encoding in a specified direction
[30]. Arterial flow is obtained by setting a two-dimensional acquisition plane through the
selected vessel cross-section, encoding velocity through-plane, and integrating velocities over
the cross-section [Figure 1.3 (left pannel)]. The signal-to-noise ratio (SNR) is determined by
the encoding velocity (VENC), which must be set properly in order to avoid aliasing (SNR is
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Tonometer

Figure 1.1 — Schematic representation of the basic principle of applanation tonometry.

set too low) or insufficient contrast (SNR is set too high) [29]. Despite the advantages offered
by the method, PC-MRI is expensive and most suited to imaging central vessels.

Doppler ultrasound is less expensive and can be more easily employed for imaging peripheral
arteries. Pulsed Doppler relies on the acquisition of a velocity spectrum over time inside a
sample volume that is positioned by the operator, typically in the center of the vessel [Figure
1.3 (right pannel)]. The intensities of pixels in each vertical line of the spectrum essentially
represent a histogram of velocities within the sample volume at the given time instance.
Therefore, the spectrum can indicate whether "the velocity profile is relatively flat (narrow
spectrum) or contains a range of velocities due to a more parabolic, skewed, or turbulent
profile (broad-spectrum)" [29]. Potential problems with this technique include the assumption
of a circular left ventricular outflow tract (LVOT) and the requirement of parallel alignment of
the pulsed Doppler signal.

Having provided an overview of techniques for measuring pressure and flow/velocity wave-
forms, the following subsections review the most commonly applied techniques that harness
the measured pressure and/or flow waves for acquiring some major cardiovascular parameters.
In particular, this section presents the current state of the art for the following cardiovascular
biomarkers: aortic systolic blood pressure, cardiac output, end-systolic elastance, total arterial
compliance, and aortic characteristic impedance.
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Figure 1.2 — Conventional automated sphygmomanometer.

1.2.1 Aortic systolic blood pressure

Definition and clinical relevance

Arterial pressure varies continuously over the cardiac cycle, but in clinical practice, only
systolic and diastolic pressures are routinely reported. These are usually measured in the
brachial artery using cuff sphygmomanometry. However, the shape of the pressure waveform
changes continuously throughout the arterial tree. Although diastolic and mean arterial
pressures are relatively constant, systolic pressure may be up to 40 mmHg higher in the
brachial artery than in the aorta [31; 32; 33]. Aortic blood pressure is of great importance, as it
represents the direct pressure load faced by the ejecting left ventricle. Aortic systolic blood
pressure (aSBP) represents the cardiac and cerebral burden more directly than office systolic
blood pressure. Overall, it has been shown to be an important biomarker for the diagnosis
and prevention of cardiovascular disease [17].

State of the art

Direct measurement of aSBP is done via catheterization, which constitutes the clinical ref-
erence method for blood pressure monitoring in high-risk surgical patients and critically ill
patients. However, invasive monitoring is not feasible for routine examination or continuous
monitoring. This inherent limitation has led to the development of numerous methods for
deriving central aortic pressure waveform from a peripheral pressure wave via generalized
transfer functions [34; 35; 36], or parameter-estimation techniques from pooled clinical data

6
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Figure 1.3 — Imaging methods for measuring cross-sectional area or diameter waveforms and
flow or mean velocity waveforms. Taken from [29].

[37; 38]. The generalized transfer function constitutes a popular technique for deriving aortic
pressure from non-invasively measured peripheral pressure waves, and is employed in several
commercial devices. In essence, a transfer function is computed from the ratio of the Fourier
transform of the peripheral pressure wave, P, to the Fourier transform of the aortic pressure
wave, P4, in the frequency domain. For every harmonic, the amplitude of the transfer func-
tion is defined as the ratio of amplitudes of the peripheral and aortic pressure wave and the
phase of the transfer function as the difference in the phase between the peripheral and aortic
pressure. The generalized transfer function is derived from the average of a (large) number
of transfer functions measured in a group of human subjects. Importantly, these techniques
rely on simplified assumptions which reduce accuracy in predictions, whereas they do not
account for the specific arterial tree properties of the subject under consideration [39; 40].

1.2.2 Cardiac output
Definition and clinical relevance

Cardiac output (CO) is defined as the volume of blood expelled by the heart per unit time. For
a healthy adult at rest, CO is approximately 5 liters per minute (L/min). CO, being the main
determinant of oxygen transport to the different body regions, must be adapted to the needs
of the body at all times; CO exceeds 30 L/min during intense exercise or it can be less than 2
L/min for a patient in circulatory shock. Critically ill patients generally have abnormal oxygen
demands as a result of the underlying disease triggering process. Thus, CO monitoring is
essential for patient management in the operating room and the intensive care unit (ICU). The
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dynamic range suggests that CO is a major indicator of one’s hemodynamic state. As a result,
the determination of CO in a non-invasive, accurate, and reliable way is of utmost importance.

State of the art

The most direct and accurate way of measuring CO is to use a flowmeter, which, however, is
impractical to perform in humans only for diagnostic purposes. Other methods for acquiring
CO include invasive approaches, such as the Fick method and the thermodilution method.
The Fick method utilizes a pulmonary artery catheter to measure oxygen consumption by
the lungs and the arteriovenous difference in oxygen concentration. CO is calculated by
dividing the oxygen consumption of the lungs by the arteriovenous difference in oxygen. The
thermodilution method uses a pulmonary artery catheter having a thermistor to measure a
decrease in temperature that results from an injection of a bolus of cold fluid into the right
atrium. The Stewart-Hamilton conservation of heat equation is then used to compute CO [41].
Although the Fick method and thermodilution are both clinically feasible, they are limited in
use due to their invasive nature, as well as their association with increased risk and morbidity
in critically ill patients [42].

Other methods of measuring CO include minimally invasive methods such as pulse con-
tour analysis and oesophageal Doppler monitoring [43]. Pulse contour analysis requires the
insertion of an arterial catheter at an arterial location, allowing a continuous pulse wave-
form contour analysis to be performed. Several methods for obtaining CO from a peripheral
pressure pulse have been reported in the literature [44; 45; 46]. The oesophageal Doppler
technique measures blood flow velocity in the descending aorta utilizing a Doppler trans-
ducer placed at the tip of a flexible probe. The probe is introduced into the oesophagus
of sedated, mechanically ventilated patients and then rotated so the transducer faces the
descending aorta and a characteristic aortic velocity signal is obtained. The CO is calculated
as the heart rate multiplied by the stroke volume, where the stroke volume is calculated as
a function of the flow velocity and the cross-sectional area of the aorta. The convenience of
previously known minimally invasive methods of measuring CO is limited by their invasive
nature (catheterization is required), high cost, and the need for specialized equipment or
training.

Finally, the most commonly used non-invasive methods for CO are based on pulse wave
analysis from the cross-sectional area and blood velocities in the LVOT [47] or directly from
MRI-derived aortic flow-time signals [48]. PC-MRI has been considered to be the most precise
non-invasive technique for measuring CO [30]. Doppler ultrasound and MRI, while completely
non-invasive and reasonably accurate, require the allocation of expensive resources. Impor-
tantly, none of the aforementioned methods are practical for continuous bedside monitoring
of a patient’s CO or routine examination.
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1.2.3 End-systolic elastance
Definition and clinical relevance

Evaluation of systolic left ventricular (LV) performance is of high importance in physiological
investigation and clinical practice. An ideal parameter of LV contractility should assess the
inotropic state independently of preload, afterload, heart rate, and LV remodelling.

The concept of end-systolic elastance (E;;), first introduced by Suga and Sagawa in 1974 [49],
has become widely accepted. The Egg, i.e. the slope of the end-systolic pressure-volume
relationship (ESPVR), constitutes a pivotal determinant of LV systolic performance and is
now considered an established index of contractility [49; 50; 51]. Modelling of time-varying
elastance can be described using the relationship between the LV pressure, Py, and volume,
Vv, namely:

E(t) = Pryv (1)

AL 1.1
Vv () - Vy D

where V,; indicates the dead volume of the left ventricle [49; 51].

Being an index of the contractility and systolic stiffness of the left ventricle, E,; is affected by
the inotropic state of the myocardium and, in the long-term, by geometric remodelling and
biophysical myocardial tissue properties (which in turn depend on the stiffness of myocardial
cells, fibrosis, and other factors) [52; 53]. The effective matching between E.s and vascular load
leads to optimal mechanical function. Age-related arterial stiffening [54] and hypertension
[55] are related to the stiffening of the left ventricle, which is accompanied by an increased
value of E. It has also been shown that anti-hypertensive treatment reduces E.s and enhances
arterial-ventricular coupling [56]. Furthermore, the intercept of the ESPVR (namely V;) has
been linked with prognosis in chronic heart failure [57].

State of the art

Derivation of E; requires the measurement of multiple invasive pressure-volume loops under
various loading conditions [59] which limits its use in the routine clinical setting. Echocardio-
graphy is commonly used in the evaluation of LV systolic function and thus in the evaluation
of E,;. More recently, new techniques such as tissue Doppler imaging, three-dimensional
evaluation, and speckle tracking echocardiography have been proposed for more precisely
quantifying LV systolic function [60; 61; 62; 63]. Yet, these methods are technically complex,
time-consuming, and user-dependent.

Research has been directed towards the development of methods for deriving E.s from non-
invasive single-beat measurements [64; 65]. First, Chen et al. [64] proposed a simple equation



Chapter 1. Introduction

S «f, § :
:IE: I Psys / Q/Q'
£ /
[ / * z
—_ / w
=] / -
? / uf

/
g /

/
> / Eed
- A ==
0 Vo ESV EDV o 4 ;
LV volume [mL] N

Figure 1.4 — Concept of left ventricular elastance: (A) A heart cycle is presented as a ven-
tricular pressure-volume graph. Instantaneous elastance, end-systolic elastance (E.s) and
end-diastolic elastance (E.;) are also presented. E,; intersects the left ventricular (LV) volume
axis at the dead volume abscissa (Vy). (B) Normalized time varying elastance (Ep, E}*V) asa
function of normalized time. EDV: end-diastolic volume, ESV: end systolic volume, E(f): time
varying elastance, P s: systolic pressure. Adapted from [58].

for estimating E.s from arm cuff pressure, stroke volume, and ejection fraction. Their proposed
method incorporates an estimated normalized ventricular elastance at arterial end-diastole
which was derived from regression on previously recorded studies. Moreover, Shishido et al.
[65] suggested the estimation of E,; from pressure values, systolic time intervals, and stroke
volume. Their analysis relies on the approximation of the time-varying elastance curve by
two linear functions corresponding to the isovolumic contraction phase and the ejection
phase. The slope ratio of these functions is calculated and used for estimating E.; by the
employment of a simple equation. This methodology evidences the utility of systolic time
intervals on the estimation of E,;, while Reant et al. have also emphasized the importance of
leveraging the valuable information of systolic time intervals for assessing LV function [66].
Finally, other clinical indices for evaluating the contractile state of the heart include the use
of simple equations involving additional quantities, such as arterial elastance, end-systolic
volume, or ejection fraction [67]. However, the calculation of ejection fraction as assessed by
echocardiography can be rather sensitive to errors and derived approximately. Removal (and
replacement) of ejection fraction from the calculation equation could potentially reduce the
error imposed by such an approximation.

1.2.4 Total arterial compliance

Definition and clinical relevance

The total arterial compliance (Cr) is a biomechanical property of the arterial tree with great
physiological and pathological importance [68; 69; 70]. C7 and peripheral resistance constitute
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amajor part of the arterial load on the heart [11]. Arterial compliance expresses the ability of
the arterial system to store blood during systole without excessive pressure rise (Figure 1.5)
and influences central blood pressure [47] and stroke volume [71]. Cr is becoming a promising
parameter for evaluating the relationship between structural and functional changes in the
vascular system with respect to its elasticity [72; 73]. Alterations in arterial compliance are
associated with various physiological (aging) [74] or pathological (hypertension) conditions
[75], which cannot be necessarily assessed by current biomarkers. Importantly, Cr has been
found to be superior over traditional evaluation techniques including pulse pressure and
echocardiography [73; 75]. In addition, other studies have shown that C7 was proven capable
of differentiating among diseased, elderly, and healthy individuals [75; 76; 74]. In view of the
emerging evidence on the importance of Cr [72], the development of an accurate and simple
method for its estimation may be valuable.

dA

Arterial wall

Figure 1.5 — Graphical representation of the concept of compliance being the ability of the
arterial walls to distend, dA, under a given increase in transmural pressure, dP.

State of the art

The direct, non-invasive measurement of the Cy is not feasible due to two inherent difficulties:
(i) the absence of no simple way to compute the changes in blood volume in the systemic
arterial tree, and (ii) the strong pressure-dependency of arterial compliance that does not
allow for the derivation of a single value that can characterize arterial compliance over the
whole physiological pressure range. Some direct but traumatic methods for estimating arterial
compliance in animals have been reported in the literature [77].

To overcome these limitations, several methods have been proposed for indirect estimation
of Cr [78; 79; 80; 81]. Most commonly, these methods require simultaneous recordings of
the invasive aortic pressure and flow waves or cardiac output. Still, the complexity of these
methods has limited the assessment of Cr in everyday clinical practice, while other surrogates
of local or regional arterial stiffness [82; 83] have been used more often.

Some well-established methods for estimating C7 include the diastolic decay method, the
area method, and the pulse pressure method [81; 78]. The decay time method is based on the

11



Chapter 1. Introduction

two-element Windkessel model of systemic circulation. Its principle is that during diastole
there is no inflow from the heart, and thus, the decrease of aortic pressure, is characterized by
the decay time. This decay can be fitted mono-exponentially to any portion of the diastole to
yield the characteristic time or time constant, which is RC7. The Cr can be then calculated for
a known value of peripheral resistance (R).

The area method was introduced by Randall [84]. It essentially represents an integral variation
of the exponential decay method. The advantage is that no exponential fit is necessary.
Compliance is calculated from

[2)
RCr =f Pdx/ (P, - Py), (1.2)

h
where P; and P, are diastolic pressure at time points t; and t,, respectively.

Moreover, the pulse pressure method (PPM) [80] is based on the fact that the modulus of the
input impedance of the arterial system is represented very well by the two-element Windkessel
model for the low frequencies (1% to 5/ harmonic). Therefore, the pulse pressure will be
similar in the true arterial system and the two-element Windkessel model. The PPM uses an
iterative process that yields the value of Cr that gives the best fit between the measured pulse
pressure and the pulse pressure predicted by the two-element Windkessels model.

1.2.5 Aortic characteristicimpedance
Definition and clinical relevance

The impedance can be defined as the ratio of the pulsatile components of pressure and flow
(Figure 1.6). The impedance computed in the ascending aorta is termed input impedance
(Ziy) and is a global systemic parameter, which encompasses all effects of wave travel and
reflections of all contributions of the distal parts of the arterial tree. The aortic Z;; constitutes
the afterload of the heart. In the special case that the system is free of reflections, Z;, reduces
to Zg4- The Z,, is a cardinal parameter related to aortic stiffness and geometry. The prior
art has included invasive [85; 86; 87; 88; 89; 90; 91; 92; 93; 94] and non-invasive [47; 93; 95]
techniques for estimating Z,, in the frequency domain, whereby Z,, is approximated as the
average Z;, in the mid-to-high frequency range, the underlying assumption being that in
those frequencies the effects of reflected waves are minimal. Other approaches have proposed
time-domain calculations of the Z,, based on the early systolic part of pressure and flow
waveforms [91; 94; 96; 97; 98], when reflections are considered negligible. All of the above
frequency and time domain methods require simultaneous recordings of pressure and flow in
the aorta, which are invasive (pressure) or inconvenient and expensive (flow).

12
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Figure 1.6 — Graphical representation of the magnitude and phase of arterial input impedance.
Taken from [99].

State of the art

Existing non-invasive methods for estimating Z,, rely on pressure, flow, and geometry mea-
surements. Following the area compliance and geometry method, the characteristicimpedance
at the root of the ascending aorta is calculated analytically using the area compliance and the
geometry of the ascending aorta, namely:

N L (1.3)
\'aca

where p is the blood density equal to 1050 kg/m3, A is the cross-sectional area of the ascending
aorta, and C,4 is the area compliance of the ascending aorta, respectively. Another method
relies on the wave speed and geometry, and calculate Z,, as follows:

C
Zgo = % (1.4)

13



Chapter 1. Introduction

with p blood density, c the local pulse wave velocity, and A the luminal cross-sectional area.

Another commonly used approach is the frequency-based method which computes the charac-
teristic impedance of large vessels by averaging the modulus of the input impedance between
the fourth and tenth harmonic. The Z,, can also be determined by taking the slopes of the
aortic pressure and flow waves during the early part of the ejection period, AP and AQ, and

calculating their ratio:
_APAQ

=— . 1.5
At At (1.5)

ao
Both methods rely on the fact that characteristic impedance is a pressure-flow relation in the
absence of reflections (as reflections are small in early systole and at high frequencies).

Finally, some simplified formulas have been introduced for estimating Z,,. The time-derivative
peaks method suggests the following:

Zao = M’ (1.6)

where P}, . and Q). are the maximum values of the pressure and flow time derivatives,
respectively. Finally, the peak flow method estimates Z,, as follows:

(P, —aDBP)
Zao = Qm“x—, (1.7)
Qmax

where aDBP is the aortic DBP, Q4 is the maximum flow value, and P4y is the aortic
pressure magnitude at the maximum flow value [91].

The use of all aforementioned methods is hampered by the need for either invasive or incon-
venient and expensive methods to access simultaneous recordings of aortic pressure and flow,
wall thickness, and cross-sectional area.

1.2.6 Arterial stiffness

The beating heart is the powerhouse of the cardiovascular system. With each heartbeat, the
vasculature dilates to accommodate the additional blood volume that is ejected from the
ventricles into the aorta and the pulmonary artery. The increase in pressure associated with
vascular dilation is determined by the tension in the arterial wall, which in turn is determined
by the properties affecting the distensibility of the vessel [100]. The proximal pressure pulse
generated by ventricular ejection travels across the vasculature, at a velocity determined by
arterial geometry and mechanical properties, but also by blood pressure and vascular tone.

14
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Pulse wave velocity (PWV), defined as the propagation speed of the pulse wave through the
circulatory system, is gaining increasing interest in the clinical assessment of arterial stiffness
[101]. This is mainly attributed to a huge body of clinical evidence that has recognized PWV
being an independent predictor of cardiovascular and all-cause mortality as well as a pivotal
factor on the prognosis of hypertension [101; 102; 103; 104]. Measurement of carotid-femoral
PWV (cfPWV) is considered as the gold-standard non-invasive method for the assessment of
aortic stiffness [101], and can be readily performed by several non-invasive techniques and
devices. Its acquisition requires the distance between the two arterial sites and the time lag
between the two pulses (as assessed via the foot-to-foot methods) [105], as illustrated in Figure
1.7.

Pressure at common carotid artery

At

N

Pressure at common femoral artery

Figure 1.7 — Conventional foot-to-foot computation of the carotid-femoral pulse wave velocity
(PWV). At: the pulse transition time between the two arterial sites, L: pulse wave travel
distance between the two arterial sites.

An increased variation in sequential cfPWV measurements may be often observed [106], due
to inherent physiological vascular and hemodynamic variations or/and measurement errors.
Although age and blood pressure are two well-established determinants of PWV, the influence
of heart rate (HR) on PWV remains controversial with conflicting results being observed in
both acute and epidemiological studies [107].

Cross-sectional population studies have demonstrated either no significant correlation [108]
or a positive correlation between cfPWV and resting HR [109; 110]. Albaladejo et al. [108]
reported that there is no significant rise in cfPWV when HR is increased. On the contrary,
Lantelme et al. [110] demonstrated that HR is an important factor of the intra-patient cfPWV
changes in the elderly. Nevertheless, those studies have investigated the potential effect of
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HR on cfPWV without isolating the effect of the concurrent increase in blood pressure with
increasing HR. Arterial stiffness is known to increase with increasing blood pressure [111].
In particular, foot-to-foot cfPWV has been theoretically and empirically shown to vary with
diastolic blood pressure [7; 112; 113].

In addition, results from existing acute experimental studies have been also inconclusive
[110]. Further to the lack of consensus on the effects of HR on PWYV, the possible mechanisms
contributing to observed PWV changes with HR need to be fully elucidated; yet, many in-
vestigators have attributed HR-related changes in arterial stiffness to the viscoelasticity of
the arterial wall. With elevated HR being associated with hypertension as well as being an
independent prognostic factor of cardiovascular disease, the interaction between HR and PWV
continues to be relevant in assessing cardiovascular risk.

The aforementioned evidence concludes that it is critical to investigate more thoroughly the
blood pressure-independent cfPWV-HR relation; especially, now, that the clinical use of cfPWV
isincreasing [114; 115; 116].

1.3 Numerical models of the cardiovascular system

Models of the cardiovascular system aim to disentangle the functioning of the cardiovascular
system via the mathematical analysis and computational simulations of pulsatile hemody-
namics (i.e. the dynamics of pulsatile blood flow). Cardiovascular models can be used to
understand the physiological basis underlying measured outcomes, predict the effect of vascu-
lar ageing and pathophysiology on cardiovascular properties, and study the effect of treatment
and interventions to address vascular ageing.

There exist three main modelling approaches: three-dimensional (3-D), one-dimensional
(1-D), and zero-dimensional (0-D) models. They can all describe time-varying blood pressure
and flow in the cardiovascular system, but with a different degree of precision in space. More
specifically, 3-D models consider changes in pressure and flow in the three-dimensional space,
1-D models account for the variation of pressure and flow only along the axial direction of the
arteries, and 0-D models are space-independent. The choice of dimensionality in modelling
the cardiovasculature is dictated by the scope and the precision required in the performed
study.

Lumped parameter (0-D) models involve the assumption of uniform distributions of pressure,
flow, and volume within any compartment of the model (vessel or part of vessel) at any instant
in time, while in higher dimensional models these parameters can vary spatially [117]. The
Windkessel models [118] offer an overall description of the arterial network, but they do not
allow for studying pressure and flow wave propagation phenomena in the arterial tree. On the
other hand, such an aim can be fulfilled by distributed models which take into account the
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arterial geometry. The principle behind distributed models is that they discretize the arterial
vasculature in small segments with known mechanical and geometrical properties. The wave
transmission characteristics of each arterial segment can be described using Womersley’s
oscillatory flow theory [119].

In distributed models of the arterial tree, the 1-D form of the blood flow equations describing
the conservation of mass and momentum is given as:

aQ+‘3A—o (1.8)
ox ot '

0Q 4(Q%*/A 1 0P
o oQ/y_ 1,0P , .. L (1.9)
ot 0x p 0x o

where A is the vessel cross-sectional area and 7 is wall shear stress, usually estimated using
Poiseuille’s law. The two equations above have three variables: pressure B, flow Q, and area
A. Therefore a constitutive law relating cross-sectional area, A, to pressure, P, is needed to
form a system of three equations with three unknowns, which can be then easily solved using
different numerical techniques (e.g. finite differences).

Distributed 1-D models of the arterial tree have attracted great interest due to the increasing
impact of cardiovascular disease. They have provided a valuable alternative for simulating
wave propagation either in parts or the entire human arterial network, under various physio-
logical or pathological conditions [120; 121; 122; 58; 123] which are difficult to study in vivo.
These models are fairly accurate and compare well to human measurements of flow and
pressure. Moreover, they allow for the preliminary evaluation of predictive models across a
wide range of cardiovascular parameters [117] in a quick and cost-efficient way, while their
results can be rather informative of the design of clinical studies [124; 125].

Previous works have introduced a plethora of 1-D models with substantial variations in many
aspects such as the incorporation (or not) of a heart left ventricular (LV) model (essential for
grasping ventricular-vascular coupling effects), inclusion (or not) of cerebral and/or coronary
circulation, formulations for the viscoelasticity of the aortic wall, approximations for wall
shear stress and convective acceleration term and boundary conditions at terminal sites [58].

In this thesis, we used the model previously developed and validated by Reymond et al.
[58; 127]. This valuable computational tool permitted the development and validation of
monitoring methods designed in this thesis, by providing a controlled in silico environment
where the actual entire hemodynamical profile is known. In addition, it allowed us to generate
large datasets which are particularly useful for the training and testing of machine learning
algorithms.
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Figure 1.8 — Evolution of 1-D arterial tree models over the passage of time: (A) Westerhof’s
model in 1969 [126], (B) Reymond’s model in 2009 [58], (C) Mynard’s model in 2015 [123].

1.4 Machine learning framework

1.4.1 Supervised learning

In clinical practice, diagnosis of disease or pathology is performed by means of tests, exami-
nations or other procedures that can be applied rapidly and easily to the target population.
Sensu lato, these tests can be formulated as a form of mapping f: X — Y, where X is an input
information space and Y is the output of the test. Importantly, when a clinician conducts an
examination, he/she uses the available or measured data and performs the mapping based on
the knowledge that he/she has acquired from domain expertise and experience. This process
allows him/her for reaching a clinical decision regarding the medical state of the subject
under consideration. Nevertheless, in the majority of medical cases, determining the mapping
function f for achieving effective diagnosis is not a trivial task.

Recent advancements in computer systems and measurement techniques have allowed for
the acquisition and analysis of high-fidelity data. In addition, the increase in computational
power, storage, memory, and the generation of staggering volumes of data have permitted
computers to perform a wide-range of complex tasks with impressive accuracy [128]. All the
above have created an area full of promise for the development of novel biomedical tools
which can assist clinical decision-making.

Supervised learning refers to methods in which a model is trained on a range of inputs (or
features) which are associated with a known outcome. Once the model is successfully trained,
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it is capable of making outcome predictions when applied to new data. Predictions which
are made by models trained using supervised learning can be either discrete (e.g. positive
or negative, benign or malignant) or continuous (e.g. a score from 0 to 100). The supervised
learning techniques that yield a discrete prediction are known as classification techniques,
whereas those techniques that predict a continuous outcome are called regression techniques.

The methods developed in this thesis employ regression models. In regression analysis, we
assume a training dataset of N examples (x1, y1), ..., (X, Yn). We consider some particular
regression problems for which we need to relate some specific parameters (input features) to
a clinical continuous variable (output). A loss function L(y, y), that measures the discrepancy
between the model predictions [namely y; = f(x;)] and the actual outcome instance (y;) is
selected. The most common loss function in a regression setting is the (squared) difference
between the target and the predicted value, namely L(7, y) = (J — y)%.

In supervised learning, the aim is to find the function f * that minimizes the expected loss over
the data generating distribution D. Therefore, the learned mapping allows for establishing
a system which can be used to map de novo elements of X to Y. The expected loss can be
approximated by averaging the loss over the available training data:

1
f=argminNZL(f(xi),yi) (1.10)

The performance of a regression model is usually assessed using either cross-validation
or external validation methods. Cross-validation, or k-fold cross-validation, refers to the
validation technique where the dataset is partitioned in k subsets. The k-1 subsets are used
for the training and the remaining left-out subset is used for the testing [129]. This technique
helps overcome issues, such as selection bias or overfitting with the model. However, the
model performance needs to be tested for heterogeneity, which is followed through with
external validation. The use of independent datasets allows proper assessment of whether a
model can be generalised to populations outside of the study data [130].

Learning curves are a well-established diagnostic tool for regression methods that learn from
a training dataset incrementally. The model can be evaluated on the training dataset and on
a hold-out validation dataset after each update during training and plots of the measured
performance can created to show learning curves. Reviewing learning curves of models during
training can be used to diagnose problems with learning, such as an underfit or overfit model,
as well as whether the training and validation datasets are suitably representative.

In regression problems, the performance of machine learning methods is often assessed using
the correlation between estimated and reference parameter values. The limits of agreement
technique (also known as Bland-Altman analysis [131]) is also used. This technique quantifies
the accuracy of the predictive model in comparison to the reference method using the bias
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(mean error) and limits of agreement (twice the standard deviation of the errors). The limits
of agreement technique is preferred for assessing agreement between two methods since
correlation coefficients can be misleading in this context. Additional measures include the
root mean square error (RMSE), normalized RMSE, mean absolute error (MAE) or others.

This thesis uses a multitude of regression pipelines (different combinations of regression
models and features) as well as evaluation metrics. The detailed description of the machine
learning methods can be found in the literature [132; 133; 134; 135; 136; 137; 138].

1.4.2 Application in cardiovascular medicine

The booming of data has led to efforts of developing new biomedical tools using artificial
intelligence. Artificial intelligence plays a major role in the revolution in medicine by providing
systems with the capacity to learn and improve from experience without explicit human
intercession. In addition, recent technological advances have spurred an abundance of “big
data” in healthcare [139]. Machine learning algorithms, including deep learning algorithms
[140], are being used increasingly due to their flexible nature in evaluating large datasets
without the need for specified assumptions.

A large amount of biomedical and clinical data is routinely collected which is suitable for
training machine learning models to assess health in humans. In relation to pathophysiology,
the advancement in measuring and imaging techniques has encouraged the employment
of machine learning for estimating clinical pathophysiological indices and validating their
results. This promising area of research could not exclude applications on cardiovascular
health [141; 142; 143; 144]. A multitude of previous examples exists in the literature, including
applications of multiple linear regression for estimating PWV from age and routine blood
pressure measurements [145; 146], and neural networks to estimate aortic blood pressure
from radial blood pressure [142].

Arterial pulse wave signals can be acquired in the clinical setting using, for instance, applana-
tion tonometry and ultrasound systems. Concurrently, signals such as the electrocardiogram
(ECG) and photoplethysmogram (PPG) can be obtained using consumer devices such as
smartphones and fitness trackers. In addition, images of the cardiovascular system and af-
fected organs can be acquired by ultrasound, MRI, and computed tomography, resulting in
improved visual assessment of functional and structural changes associated with disease and
pathology. Importantly, the complexity of the new, available data often renders traditional
statistical methods insufficient to efficiently develop predictive tools to assist clinical decision-
making. In contrast, machine learning offers promise for developing methods to improve and
automate cardiovascular health assessment, and to guide therapeutic interventions.

Moreover, machine learning-based techniques for assessing vascular age have the potential
to improve the accessibility of vascular age assessment. Currently, blood pressure is the only
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biomarker of vascular age that is routinely measured in primary care. A notable number
of issues limit the use of other markers of vascular ageing [147]. Machine learning-based
techniques are now being developed which could be used in primary care with the minimal
additional workload, such as using routinely collected clinical data to estimate central hemo-
dynamical quantities and cardiac indices. Thus, machine learning-based techniques have
potential to improve the accessibility of vascular age assessment (Figure 1.9).

This thesis emphasizes on the clinical utility of machine learning for assessing vascular ageing
via its application for estimating key cardiovascular parameters.

Clinician-informed

Clinical data treatment
Patient-specific data
- Demographics (age, sex, BMI, etc.) Cardiovascular outcomes
) EDr.mronment Machine Le.arnlng - Patient monitoring (arterial stiffness,
) ; |se.a|\seh. " Modelling central blood pressure, etc.)
= Liafr;'t;e'(ssszkmg it etc) Hidden layers - CVrisk identification
: b A Input CVout -Di i
- Brachial blood pressure npu, o @ Disease detection
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<| A . R
Inputs s ’:A‘: . Model-derived

outputs

Risk classification

Figure 1.9 — Machine learning applications in the assessment of vascular ageing. Adapted from
[148].

1.5 Thesis aims

The overall objective of this thesis was to develop and validate original non-invasive methods
for the estimation of cardiovascular biomarkers by leveraging the simulation capacity of a
physics-based model of the cardiovascular system and artificial intelligence. The research
presented in this thesis aims to achieve the following:

* To develop novel monitoring tools for central hemodynamics (i.e. aSBP and CO) and

cardiac contractility (i.e. LV E¢;) using easily obtained non-invasive measurements.
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¢ To improve assessment of local and global arterial elasticity (i.e. Z,, and C7) via the
development of machine learning-based estimation methods.

* To study the intrinsic effect of heart rate on arterial stiffness as assessed by the cfPWV
measurement.

* To evaluate the performance of the methods on large sets of both clinical and in silico
data.

1.6 Thesis outline

This thesis is structured as follows. Chapters 2 introduces a novel inverse problem-solving
method for estimating aSBP and CO. Chapter 3 presents a study of the performance of the
inverse method for estimating SV using an MRI protocol, culminating in the conclusion that
our algorithm performs well in a large cohort of healthy individuals. Moreover, in Chapter
3, we wish to verify whether physics-based models provide an additional value over the tra-
ditional statistical approaches. In Chapter 4, an alternative predictive model is adopted for
the estimation of central hemodynamics and cardiac contractility using machine learning.
Chapter 5 presents an artificial intelligence-based technique for LV E.; using non-invasive
systolic timing features. Chapter 6 aims to investigate the utility of peripheral blood pressure
waves in the prediction of the contractile state of the heart by deciphering relevant hidden
morphology-based information in the waves using deep learning. The next goal arises from
the need to monitor the hemodynamic condition in humans is the evaluation of the arterial
elastic properties. In Chapter 7, we develop machine learning models for predicting Z,, and
Cr by leveraging the informative and easily obtained regional pulse wave velocity measure-
ments. We additionally investigate the accuracy in determining C7 by exploiting the entire
peripheral blood pressure wave (Chapter 8). To complement the research for the assessment
of arterial stiffness, in Chapter 9 we aim to answer the research question that emerged in the
Introduction of this thesis (section 1.2.6): Is the PWV measurement independent on changes
in HR?. Consequently, we evaluate the effect of HR on PWV under controlled hemodynamic
conditions and especially with respect to blood pressure that is a strong determinant of arte-
rial stiffness. Finally, Chapter 10 presents a summary of the achievements of this thesis, and
directions for future work.

The chapters of this dissertation are written as manuscripts that are either published or in
preparation for publication.

22



Bibliography

(1]

(2]

3]

(4]

(5]

(6]

(7]

(8]

(9]

W. H. Organization, “Global action plan for the prevention and control of noncommuni-
cable diseases 2013-2020,” 2013.

P. McAleese and W. Odling-Smee, “The effect of complications on length of stay,” Annals
of Surgery, vol. 220, no. 6, pp. 740-744, Dec. 1994.

N. A. Khan, H. Quan, J. M. Bugar, J. B. Lemaire, R. Brant, and W. A. Ghali, “Association
of postoperative complications with hospital costs and length of stay in a tertiary care
center,” Journal of General Internal Medicine, vol. 21, no. 2, pp. 177-180, Feb. 2006.

R.J. Lagoe, P. E. Johnson, and M. P. Murphy, “Inpatient hospital complications and
lengths of stay: a short report,” BMC research notes, vol. 4, p. 135, May 2011.

N. Savji, C. B. Rockman, A. H. Skolnick, Y. Guo, M. A. Adelman, T. Riles, and J. S. Berger,
“Association between advanced age and vascular disease in different arterial territories:
a population database of over 3.6 million subjects,” Journal of the American College of
Cardiology, vol. 61, no. 16, pp. 1736-1743, Apr. 2013.

M. R. Hamczyk, R. M. Nevado, A. Barettino, V. Fuster, and V. Andrés, “Biological versus
chronological aging,” Journal of the American College of Cardiology, vol. 75, no. 8, pp.
919-930, Mar. 2020. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
S0735109720300711

W. W. Nichols, M. E O’Rourke, and C. Vlachopoulos, McDonald’s blood flow In arteries,
6th ed. London: Arnold, 2011.

H.-K. Yip, C.-J. Wu, H.-W. Chang, C.-H. Yang, T.-H. Yu, Y.-H. Chen, and C.-L. Hang,
“Prognostic value of circulating levels of endothelin-1 in patients after acute myocardial
infarction undergoing primary coronary angioplasty,” Chest, vol. 127, no. 5, pp. 1491-
1497, May 2005.

C. Di Gennaro, A. Biggi, A. L. Barilli, E. Fasoli, N. Carra, A. Novarini, R. Delsignore, and
A. Montanari, “Endothelial dysfunction and cardiovascular risk profile in long-term
withdrawing alcoholics,” Journal of Hypertension, vol. 25, no. 2, pp. 367-373, Feb. 2007.

23


https://linkinghub.elsevier.com/retrieve/pii/S0735109720300711
https://linkinghub.elsevier.com/retrieve/pii/S0735109720300711

Bibliography

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

24

W. Koenig, “Update on integrated biomarkers for assessment of long-term risk of
cardiovascular complications in initially healthy subjects and patients with manifest
atherosclerosis,” Annals of Medicine, vol. 41, no. 5, pp. 332-343, 2009.

G. Elzinga and N. Westerhof, “Pressure and flow generated by the left ventricle against
different impedances,” Circulation Research, vol. 32, no. 2, pp. 178-186, Feb. 1973.
[Online]. Available: https://www.ahajournals.org/doi/10.1161/01.RES.32.2.178

T. K. Waddell, A. M. Dart, T. L. Medley, J. D. Cameron, and B. A. Kingwell, “Carotid
pressure is a better predictor of coronary artery disease severity than brachial pressure,”
Hypertension (Dallas, Tex.: 1979), vol. 38, no. 4, pp. 927-931, Oct. 2001.

M. E. Safar, ]. Blacher, B. Pannier, A. P. Guerin, S. J. Marchais, P-M. Guyonvarc’h, and G. M.
London, “Central pulse pressure and mortality in end-stage renal disease,” Hypertension
(Dallas, Tex.: 1979), vol. 39, no. 3, pp. 735-738, Mar. 2002.

H. Berkenstadt, N. Margalit, M. Hadani, Z. Friedman, E. Segal, Y. Villa, and A. Perel,
“Stroke volume variation as a predictor of fluid responsiveness in patients undergoing
brain surgery,” Anesthesia & Analgesia, vol. 92, no. 4, pp. 984-989, Apr. 2001. [Online].
Available: https://insights.ovid.com/crossref?2an=00000539-200104000-00034

M. McKendry, H. McGloin, D. Saberi, L. Caudwell, A. R. Brady, and M. Singer,
“Randomised controlled trial assessing the impact of a nurse delivered, flow monitored
protocol for optimisation of circulatory status after cardiac surgery,” BMJ, vol. 329, no.
7460, p. 258, Jul. 2004. [Online]. Available: http://www.bmj.com/lookup/doi/10.1136/
bmj.38156.767118.7C

N. Lees, M. Hamilton, and A. Rhodes, “Clinical review: goal-directed therapy in high
risk surgical patients,” Critical Care, vol. 13, no. 5, p. 231, 2009. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784362/

A. Avolio, “Central aortic blood pressure and cardiovascular risk: a paradigm shift?”
Hypertension (Dallas, Tex.: 1979), vol. 51, no. 6, pp. 1470-1471, Jun. 2008.

L. Yang, B. Qin, X. Zhang, Y. Chen, and J. Hou, “Association of central blood pressure
and cardiovascular diseases in diabetic patients with hypertension,” Medicine, vol. 96,
no. 42, Oct. 2017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5662393/

A. Song-Tao, Q. Yan-Yan, and W. Li-Xia, “The severity of coronary artery disease
evaluated by central systolic pressure and fractional diastolic pressure,” North American
Journal of Medical Sciences, vol. 2, no. 5, pp. 218-220, May 2010. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347647/


https://www.ahajournals.org/doi/10.1161/01.RES.32.2.178
https://insights.ovid.com/crossref?an=00000539-200104000-00034
http://www.bmj.com/lookup/doi/10.1136/bmj.38156.767118.7C
http://www.bmj.com/lookup/doi/10.1136/bmj.38156.767118.7C
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784362/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662393/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5662393/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3347647/

Bibliography

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

K. E. Covinsky, R. M. Palmer, R. H. Fortinsky, S. R. Counsell, A. L. Stewart, D. Kresevic, C. J.
Burant, and C. S. Landefeld, “Loss of independence in activities of daily living in older
adults hospitalized with medical illnesses: increased vulnerability with age,” Journal of
the American Geriatrics Society, vol. 51, no. 4, pp. 451-458, Apr. 2003.

W. C. Shoemaker, H. Belzberg, C. C. Wo, D. P. Milzman, M. D. Pasquale, L. Baga, M. A.
Fuss, G. J. Fulda, K. Yarbrough, J. P. Van DeWater, P. J. Ferraro, D. Thangathurai, P. Roffey,
G. Velmahos, J. A. Murray, J. A. Asensio, K. ElTawil, W. R. Dougherty, M. J. Sullivan,
R. S. Patil, J. Adibi, C. B. James, and D. Demetriades, “Multicenter study of noninvasive
monitoring systems as alternatives to invasive monitoring of acutely ill emergency
patients,” Chest, vol. 114, no. 6, pp. 1643-1652, Dec. 1998.

J. C. Chaney and S. Derdak, “Minimally invasive hemodynamic monitoring for the
intensivist: current and emerging technology,” Critical Care Medicine, vol. 30, no. 10, pp.
2338-2345, Oct. 2002.

T. G. Papaioannou, A. D. Protogerou, K. S. Stamatelopoulos, M. Vavuranakis, and C. Ste-
fanadis, “Non-invasive methods and techniques for central blood pressure estimation:
procedures, validation, reproducibility and limitations,” Current Pharmaceutical Design,
vol. 15, no. 3, pp. 245-253, 2009.

R. Kelly, C. Hayward, A. Avolio, and M. O’'Rourke, “Noninvasive determination of age-
related changes in the human arterial pulse,” Circulation, vol. 80, no. 6, pp. 1652-1659,
Dec. 1989.

G. M. Drzewiecki, J. Melbin, and A. Noordergraaf, “Arterial tonometry: review and
analysis,” Journal of Biomechanics, vol. 16, no. 2, pp. 141-152, 1983.

E Verbeke, P. Segers, S. Heireman, R. Vanholder, P. Verdonck, and L. M. Van Bortel, “Non-
invasive assessment of local pulse pressure: importance of brachial-to-radial pressure
amplification,” Hypertension (Dallas, Tex.: 1979), vol. 46, no. 1, pp. 244-248, Jul. 2005.

D. S. Picone, M. G. Schultz, P. Otahal, S. Aakhus, A. M. Al-Jumaily, J. A. Black, W.J. Bos,
J. B. Chambers, C.-H. Chen, H.-M. Cheng, A. Cremer, J. E. Davies, N. Dwyer, B. A. Gould,
A. D. Hughes, P. S. Lacy, E. Laugesen, E Liang, R. Melamed, S. Muecke, N. Ohte, S. Okada,
S. Omboni, C. Ott, X. Peng, T. Pereira, G. Pucci, R. Rajani, P. Roberts-Thomson, N. B.
Rossen, D. Sueta, M. D. Sinha, R. E. Schmieder, H. Smulyan, V. K. Srikanth, R. Stewart,
G. A. Stouffer, K. Takazawa, ]J. Wang, B. E. Westerhof, E Weber, T. Weber, B. Williams, H. Ya-
mada, E. Yamamoto, and J. E. Sharman, “Accuracy of Cuff-Measured Blood Pressure:
Systematic Reviews and Meta-Analyses,” Journal of the American College of Cardiology,
vol. 70, no. 5, pp. 572-586, Aug. 2017.

D. J. E M. Thuijs, M. W. A. Bekker, D. P. Taggart, A. P. Kappetein, T. M. Kieser,
D. Wendt, G. Di Giammarco, G. D. Trachiotis, J. D. Puskas, and S. J. Head,

25



Bibliography

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

26

“Improving coronary artery bypass grafting: a systematic review and meta-analysis
on the impact of adopting transit-time flow measurement,” European Journal of
Cardio-Thoracic Surgery, vol. 56, no. 4, pp. 654-663, Oct. 2019. [Online]. Available:
https://academic.oup.com/ejcts/article/56/4/654/5419275

J. P Mynard, A. Kondiboyina, R. Kowalski, M. M. Cheung, and J. J. Smolich, “Measure-
ment, analysis and interpretation of pressure/flow waves in blood vessels,” Frontiers in
Physiology, vol. 11, p. 1085, 2020.

N. Pelc, R. Herfkens, A. Shimakawa, and D. Enzmann, “Phase contrast cine magnetic
resonance imaging,” Magnetic resonance quarterly, vol. 7, no. 4, pp. 229-254, Oct. 1991.
[Online]. Available: http://europepmc.org/abstract/ MED/1790111

N. Ohte, T. Saeki, H. Miyabe, S. Sakata, S. Mukai, J. Hayano, K. Niki, M. Sugawara, and
G. Kimura, “Relationship between blood pressure obtained from the upper arm with a
cuff-type sphygmomanometer and central blood pressure measured with a catheter-
tipped micromanometer,” Heart and Vessels, vol. 22, no. 6, pp. 410-415, Nov. 2007.

A. L. Pauca, M. E O’Rourke, and N. D. Kon, “Prospective evaluation of a method for
estimating ascending aortic pressure from the radial artery pressure waveform,” Hyper-
tension (Dallas, Tex.: 1979), vol. 38, no. 4, pp. 932-937, Oct. 2001.

E.J. Kroeker and E. H. Wood, “Comparison of simultaneously recorded central and
peripheral arterial pressure pulses during rest, exercise and tilted position in man,”
Circulation Research, vol. 3, no. 6, pp. 623-632, Nov. 1955.

S. A. Hope, D. B. Tay, I. T. Meredith, and J. D. Cameron, “Use of arterial transfer functions
for the derivation of aortic waveform characteristics,” Journal of Hypertension, vol. 21,
no. 7, pp. 1299-1305, Jul. 2003.

W. J. Stok, B. E. Westerhof, and J. M. Karemaker, “Changes in finger-aorta pressure
transfer function during and after exercise,” Journal of Applied Physiology, vol. 101,
no. 4, pp. 1207-1214, Oct. 2006. [Online]. Available: http://www.physiology.org/doi/10.
1152/japplphysiol.00876.2005

B. Fetics, E. Nevo, C.-H. Chen, and D. M. Kass, “Parametric model derivation of trans-
fer function for noninvasive estimation of aortic pressure by radial tonometry,” IEEE
Transactions on Biomedical Engineering, vol. 46, pp. 698-706, 1999.

M. Karamanoglu, M. E O’Rourke, A. P. Avolio, and R. P. Kelly, “An analysis of the rela-
tionship between central aortic and peripheral upper limb pressure waves in man,”
European Heart Journal, vol. 14, no. 2, pp. 160-167, Feb. 1993.

M. Sugimachi, T. Shishido, K. Miyatake, and K. Sunagawa, “A new model-based method
of reconstructing central aortic pressure from peripheral arterial pressure,” The Japanese
Journal of Physiology, vol. 51, no. 2, pp. 217-222, Apr. 2001.


https://academic.oup.com/ejcts/article/56/4/654/5419275
http://europepmc.org/abstract/MED/1790111
http://www.physiology.org/doi/10.1152/japplphysiol.00876.2005
http://www.physiology.org/doi/10.1152/japplphysiol.00876.2005

Bibliography

(39]

[40]

(41]

(42]

(43]

(44]

(45]

[46]

(47]

(48]

A. C. Guyton and J. E. Hall, Textbook of medical physiology, 9th ed. Philadelphia : W.B.
Saunders, 1996. [Online]. Available: https://trove.nla.gov.au/work/28692053

P. Hallock and I. C. Benson, “Studies on the elastic properties of human isolated aorta,”
Journal of Clinical Investigation, vol. 16, no. 4, pp. 595-602, Jul. 1937. [Online]. Available:
https:/ /www.ncbi.nlm.nih.gov/pmc/articles/PMC424899/

M. Prabhu, “Cardiac output measurement,” Anaesthesia & Intensive Care Medicine,
vol. 8, no. 2, pp. 63-66, 2007.

M. Engoren and D. Barbee, “Comparison of cardiac output determined by
bioimpedance, thermodilution, and the fick method,” American Journal of Critical
Care, vol. 14, no. 1, pp. 40-45, 2005.

R. H. Thiele, K. Bartels, and T. J. Gan, “Cardiac output monitoring: a contemporary
assessment and review,” Critical care medicine, vol. 43, no. 1, pp. 177-185, 2015.

A. A. Udy, M. Altukroni, P. Jarett, J. A. Roberts, and J. Lipman, “A comparison
of pulse contour wave analysis and ultrasonic cardiac output monitoring in
the critically ill,” Anaesthesia and Intensive Care, vol. 40, no. 4, pp. 631-
637, Jul. 2012. [Online]. Available: https://research.monash.edu/en/publications/
a-comparison-of-pulse-contour-wave-analysis-and-ultrasonic-cardia

J.Jansen, J. Schreuder, J. Mulier, N. Smith, J. Settels, and K. Wesseling, “A comparison of
cardiac output derived from the arterial pressure wave against thermodilution in cardiac
surgery patients,” British Journal of Anaesthesia, vol. 87, no. 2, pp. 212-222, Aug. 2001.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0007091217376250

M. T. Ganter, J. A. Alhashemi, A. M. Al-Shabasy, U. M. Schmid, P. Schott, S. A. Shalabi,
A. M. Badri, S. Hartnack, and C. K. Hofer, “Continuous cardiac output measurement
by un-calibrated pulse wave analysis and pulmonary artery catheter in patients with
septic shock,” Journal of Clinical Monitoring and Computing, vol. 30, no. 1, pp. 13-22,
Feb. 2016.

P. Segers, E. R. Rietzschel, M. L. De Buyzere, S. ]J. Vermeersch, D. De Bacquer, L. M.
Van Bortel, G. De Backer, T. C. Gillebert, and P. R. Verdonck, “Noninvasive (input)
impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and
women,” Hypertension, vol. 49, no. 6, pp. 1248-1255, Jun. 2007. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.106.085480

S. S. Hickson, M. Butlin, M. Graves, V. Taviani, A. P. Avolio, C. M. McEniery, and I. B.
Wilkinson, “The relationship of age with regional aortic stiffness and diameter,” JACC:
Cardiovascular Imaging, vol. 3, no. 12, pp. 1247-1255, 2010.

27


https://trove.nla.gov.au/work/28692053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC424899/
https://research.monash.edu/en/publications/a-comparison-of-pulse-contour-wave-analysis-and-ultrasonic-cardia
https://research.monash.edu/en/publications/a-comparison-of-pulse-contour-wave-analysis-and-ultrasonic-cardia
https://linkinghub.elsevier.com/retrieve/pii/S0007091217376250
https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.106.085480

Bibliography

(49]

(50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

28

Suga Hiroyuki and Sagawa Kiichi, “Instantaneous pressure-volume relationships
and their ratio in the excised, supported canine left ventricle,” Circulation
Research, vol. 35, no. 1, pp. 117-126, Jul. 1974. [Online]. Available: https:
/ lwww.ahajournals.org/doi/abs/10.1161/01.res.35.1.117

H. Suga, K. Sagawa, and A. A. Shoukas, “Load independence of the instantaneous
pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart
rate on the ratio,” Circulation Research, vol. 32, no. 3, pp. 314-322, Mar. 1973. [Online].
Available: https://www.ahajournals.org/doi/10.1161/01.RES.32.3.314

K. Sagawa, H. Suga, A. A. Shoukas, and K. M. Bakalar, “End-systolic pressure/volume
ratio: a new index of ventricular contractility,” The American Journal of Cardiology,
vol. 40, no. 5, pp. 748-753, Nov. 1977.

B. A. Borlaug and D. A. Kass, “Ventricular-vascular interaction in heart failure,” Heart
Failure Clinics, vol. 4, no. 1, pp. 23-36, Jan. 2008.

P.D. Chantler and E. G. Lakatta, “Arterial-ventricular coupling with aging and disease,”
Frontiers in Physiology, vol. 3, p. 90, 2012.

C.-H. Chen, M. Nakayama, E. Nevo, B. J. Fetics, W. Maughan, and D. A. Kass,
“Coupled systolic-ventricular and vascular stiffening with age,” Journal of the American
College of Cardiology, vol. 32, no. 5, pp. 1221-1227, Nov. 1998. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S073510979800374X

B. A. Borlaug, C. S. Lam, V. L. Roger, R. ]. Rodeheffer, and M. M. Redfield, “Contractility
and ventricular systolic stiffening in hypertensive heart disease,” Journal of the
American College of Cardiology, vol. 54, no. 5, pp. 410-418, Jul. 2009. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0735109709016477

C. S. P Lam, A. M. Shah, B. A. Borlaug, S. Cheng, A. Verma, J. 1zzo, S. Oparil,
G. P Aurigemma, J. D. Thomas, B. Pitt, M. R. Zile, and S. D. Solomon, “Effect of
antihypertensive therapy on ventricular-arterial mechanics, coupling, and efficiency,”
European Heart Journal, vol. 34, no. 9, pp. 676-683, Mar. 2013. [Online]. Available:
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehs299

B. Ky, B. French, A. May Khan, T. Plappert, A. Wang, J. A. Chirinos, J. C. Fang,
N. K. Sweitzer, B. A. Borlaug, D. A. Kass, M. St. John Sutton, and T. P. Cappola,
“Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure,”
Journal of the American College of Cardiology, vol. 62, no. 13, pp. 1165-1172, Sep. 2013.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S073510971302247X

P. Reymond, E Merenda, E Perren, D. Riifenacht, and N. Stergiopulos, “Validation of a
one-dimensional model of the systemic arterial tree,” American Journal of Physiology.
Heart and Circulatory Physiology, vol. 297, no. 1, pp. H208-222, Jul. 2009.


https://www.ahajournals.org/doi/abs/10.1161/01.res.35.1.117
https://www.ahajournals.org/doi/abs/10.1161/01.res.35.1.117
https://www.ahajournals.org/doi/10.1161/01.RES.32.3.314
https://linkinghub.elsevier.com/retrieve/pii/S073510979800374X
https://linkinghub.elsevier.com/retrieve/pii/S0735109709016477
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehs299
https://linkinghub.elsevier.com/retrieve/pii/S073510971302247X

Bibliography

[59]

[60]

[61]

(62]

(63]

[64]

[65]

[66]

D. Burkhoff, I. Mirsky, and H. Suga, “Assessment of systolic and diastolic ventricular
properties via pressure-volume analysis: a guide for clinical, translational, and basic
researchers,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 289,
no. 2, pp. H501-512, Aug. 2005.

P Reant, L. Labrousse, S. Lafitte, P. Bordachar, X. Pillois, L. Tariosse, S. Bonoron-Adele,
P. Padois, C. Deville, R. Roudaut, and P. Dos Santos, “Experimental validation of cir-
cumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress
echocardiography in ischemic conditions,” Journal of the American College of Cardiology,
vol. 51, no. 2, pp. 149-157, Jan. 2008.

M. Leitman, P. Lysyansky, S. Sidenko, V. Shir, E. Peleg, M. Binenbaum, E. Kaluski,
R. Krakover, and Z. Vered, “Two-dimensional strain-a novel software for real-time quan-
titative echocardiographic assessment of myocardial function,” Journal of the American
Society of Echocardiography: Official Publication of the American Society of Echocardiog-
raphy, vol. 17, no. 10, pp. 1021-1029, Oct. 2004.

S. Langeland, J. D’hooge, P. E Wouters, H. A. Leather, P. Claus, B. Bijnens, and G. R.
Sutherland, “Experimental validation of a new ultrasound method for the simultane-
ous assessment of radial and longitudinal myocardial deformation independent of
insonation angle,” Circulation, vol. 112, no. 14, pp. 2157-2162, Oct. 2005.

E. Donal, C. Bergerot, H. Thibault, L. Ernande, J. Loufoua, L. Augeul, M. Ovize, and
G. Derumeaux, “Influence of afterload on left ventricular radial and longitudinal systolic
functions: a two-dimensional strain imaging study,” European Journal of Echocardiog-
raphy: The Journal of the Working Group on Echocardiography of the European Society
of Cardiology, vol. 10, no. 8, pp. 914-921, Dec. 2009.

C. H. Chen, B. Fetics, E. Nevo, C. E. Rochitte, K. R. Chiou, P. A. Ding, M. Kawaguchi,
and D. A. Kass, “Noninvasive single-beat determination of left ventricular end-systolic
elastance in humans,” Journal of the American College of Cardiology, vol. 38, no. 7, pp.
2028-2034, Dec. 2001.

T. Shishido, K. Hayashi, K. Shigemi, T. Sato, M. Sugimachi, and K. Sunagawa,
“Single-beat estimation of end-systolic elastance using bilinearly approximated
time-varying elastance curve.” Circulation, vol. 102, no. 16, pp. 1983-1989, Oct. 2000.
[Online]. Available: http://europepmc.org/abstract/MED/11034949

P. Reant, M. Dijos, E. Donal, A. Mignot, P. Ritter, P Bordachar, P Dos Santos,
C. Leclercq, R. Roudaut, G. Habib, and S. Lafitte, “Systolic time intervals as simple
echocardiographic parameters of left ventricular systolic performance: correlation
with ejection fraction and longitudinal two-dimensional strain,” European Journal of
Echocardiography, vol. 11, no. 10, pp. 834-844, Dec. 2010. [Online]. Available: https:
//academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ejechocard/jeq084

29


http://europepmc.org/abstract/MED/11034949
https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ejechocard/jeq084
https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ejechocard/jeq084

Bibliography

(67]

[68]

(69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

30

J. A. Chirinos, “Ventricular-arterial coupling: Invasive and non-invasive assessment,”
Artery Research, vol. 7, no. 1, Mar. 2013.

M. E. Safar and G. M. London, “Arterial and venous compliance in sustained essential
hypertension,” Hypertension, vol. 10, no. 2, pp. 133-139, Aug. 1987. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/01.HYP.10.2.133

D. Chemla, I. Antony, Y. Lecarpentier, and A. Nitenberg, “Contribution of
systemic vascular resistance and total arterial compliance to effective arterial
elastance in humans,” American Journal of Physiology-Heart and Circulatory
Physiology, vol. 285, no. 2, pp. H614-H620, Aug. 2003. [Online]. Available:
https://www.physiology.org/doi/10.1152/ajpheart.00823.2002

B. A. Haluska, L. Jeffriess, M. Downey, S. G. Carlier, and T. H. Marwick, “Influence
of cardiovascular risk factors on total arterial compliance,” Journal of the American
Society of Echocardiography, vol. 21, no. 2, pp. 123-128, Feb. 2008. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0894731707004713

N. Stergiopulos, J. J. Meister, and N. Westerhof, “Determinants of stroke volume
and systolic and diastolic aortic pressure,” American Journal of Physiology-Heart and
Circulatory Physiology, vol. 270, no. 6, pp. H2050-H2059, Jun. 1996. [Online]. Available:
https://www.physiology.org/doi/10.1152/ajpheart.1996.270.6.H2050

R. Heitmar, “Total arterial compliance: the future of cardiovascular risk assessment?”
Journal of Human Hypertension, vol. 24, no. 4, pp. 227-229, Apr. 2010. [Online].
Available: http://www.nature.com/articles/jhh2009106

B. A. Haluska, L. Jeffries, S. Carlier, and T. H. Marwick, “Measurement of arterial distensi-
bility and compliance to assess prognosis,” Atherosclerosis, vol. 209, no. 2, pp. 474-480,
Apr. 2010.

L. Van Bortel and J. Spek, “Influence of aging on arterial compliance,” Journal of
Human Hypertension, vol. 12, no. 9, pp. 583-586, Sep. 1998. [Online]. Available:
http://www.nature.com/articles/ 1000669

A. Beltran, “Arterial compliance abnormalities in isolated systolic hypertension,”
American Journal of Hypertension, vol. 14, no. 10, pp. 1007-1011, Oct. 2001. [Online].
Available: https://academic.oup.com/ajh/article-lookup/doi/10.1016/S0895-7061(01)
02160-4

L. Lind, “Arterial compliance and endothelium-dependent vasodilation are inde-
pendently related to coronary risk in the elderly: the Prospective Investigation
of the Vasculature in Uppsala Seniors (PIVUS) study,” Clinical Physiology and
Functional Imaging, vol. 28, no. 6, pp. 373-377, Nov. 2008. [Online]. Available:
http://doi.wiley.com/10.1111/j.1475-097X.2008.00816.x


https://www.ahajournals.org/doi/10.1161/01.HYP.10.2.133
https://www.physiology.org/doi/10.1152/ajpheart.00823.2002
https://linkinghub.elsevier.com/retrieve/pii/S0894731707004713
https://www.physiology.org/doi/10.1152/ajpheart.1996.270.6.H2050
http://www.nature.com/articles/jhh2009106
http://www.nature.com/articles/1000669
https://academic.oup.com/ajh/article-lookup/doi/10.1016/S0895-7061(01)02160-4
https://academic.oup.com/ajh/article-lookup/doi/10.1016/S0895-7061(01)02160-4
http://doi.wiley.com/10.1111/j.1475-097X.2008.00816.x

Bibliography

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

A. A. Shoukas and K. Sagawa, “Control of total systemic vascular capacity by the carotid
sinus baroreceptor reflex,” Circulation Research, vol. 33, no. 1, pp. 22-33, Jul. 1973.
[Online]. Available: https://www.ahajournals.org/doi/10.1161/01.RES.33.1.22

P. Segers, P. Verdonck, Y. Deryck, S. Brimioulle, R. Naeije, S. Carlier, and N. Stergiopulos,
“Pulse pressure method and the area method for the estimation of total arterial compli-
ance in dogs: sensitivity to wave reflection intensity,” Annals of Biomedical Engineering,
vol. 27, no. 4, pp. 480-485, Aug. 1999.

N. Stergiopulos, P. Segers, and N. Westerhof, “Use of pulse pressure method for estimat-
ing total arterial compliance in vivo,” The American Journal of Physiology, vol. 276, no. 2
Pt 2, pp. H424-428, Feb. 1999.

N. Stergiopulos, J. J. Meister, and N. Westerhof, “Simple and accurate way for estimat-
ing total and segmental arterial compliance: the pulse pressure method,” Annals of
Biomedical Engineering, vol. 22, no. 4, pp. 392-397, Aug. 1994.

N. Stergiopulos, J. Meister, and N. Westerhof, “Evaluation of methods for estimation
of total arterial compliance,” American Journal of Physiology-Heart and Circulatory
Physiology, vol. 268, no. 4, pp. H1540-H1548, 1995.

I. S. Mackenzie, I. B. Wilkinson, and J. R. Cockcroft, “Assessment of arterial stiffness in
clinical practice,” QJ/M: monthly journal of the Association of Physicians, vol. 95, no. 2,
pp. 67-74, Feb. 2002.

S. Sakuragi and W. P. Abhayaratna, “Arterial stiffness: methods of measurement, physio-
logic determinants and prediction of cardiovascular outcomes,” International Journal
of Cardiology, vol. 138, no. 2, pp. 112-118, Jan. 2010.

O. S. Randall, M. D. Esler, R. V. Calfee, G. E Bulloch, A. S. Maisel, and
B. Culp, “Arterial compliance in hypertension,” Australian and New Zealand
Journal of Medicine, vol. 6, pp. 49-59, Jun. 1976. [Online]. Available: http:
//doi.wiley.com/10.1111/j.1445-5994.1976.tb03323.x

W. W. Nichols, C. R. Conti, W. E. Walker, and W. R. Milnor, “Input impedance of the
systemic circulation in man.” Circulation Research, vol. 40, no. 5, pp. 451-458, May 1977.
[Online]. Available: https://www.ahajournals.org/doi/10.1161/01.RES.40.5.451

C. J. Pepine, W. W. Nichols, and C. R. Conti, “Aortic input impedance in heart
failure,” Circulation, vol. 58, no. 3, pp. 460-465, Sep. 1978. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/01.CIR.58.3.460

J. P. Murgo, N. Westerhof, J. P. Giolma, and S. A. Altobelli, “Aortic input impedance
in normal man: relationship to pressure wave forms,” Circulation, vol. 62, no. 1, pp.

31


https://www.ahajournals.org/doi/10.1161/01.RES.33.1.22
http://doi.wiley.com/10.1111/j.1445-5994.1976.tb03323.x
http://doi.wiley.com/10.1111/j.1445-5994.1976.tb03323.x
https://www.ahajournals.org/doi/10.1161/01.RES.40.5.451
https://www.ahajournals.org/doi/10.1161/01.CIR.58.3.460

Bibliography

(88]

(89]

[90]

(91]

(92]

(93]

(94]

[95]

32

105-116, Jul. 1980. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.
CIR.62.1.105

W. Gundel, G. Cherry, B. Rajagopalan, L. B. Tan, G. Lee, and D. Schultz, “Aortic input
impedance in man: acute response to vasodilator drugs,” Circulation, vol. 63, no. 6, pp.
1305-1314, Jun. 1981. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.
CIR.63.6.1305

J. Merillon, G. Fontenier, J. Lerallut, M. Jaffrin, J. Chastre, P. Assayag, G. Motte, and
R. Gourgon, “Aortic input impedance in heart failure: comparison with normal subjects
and its changes during vasodilator therapy*,” European Heart Journal, vol. 5, no. 6,
pp. 447-455, Jun. 1984. [Online]. Available: https://academic.oup.com/eurheartj/
article-lookup/doi/10.1093/oxfordjournals.eurheartj.a061690

W. W. Nichols, M. E O’'Rourke, A. P. Avolio, T. Yaginuma, J. P. Murgo, C. ]. Pepine,
and C. Conti, “Effects of age on ventricular-vascular coupling,” The American
Journal of Cardiology, vol. 55, no. 9, pp. 1179-1184, Apr. 1985. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/0002914985906599

C. Lucas, B. Wilcox, B. Ha, and G. Henry, “Comparison of time domain algorithms
for estimating aortic characteristic impedance in humans,” IEEE Transactions on
Biomedical Engineering, vol. 35, no. 1, pp. 62-68, Jan. 1988. [Online]. Available:
http://ieeexplore.ieee.org/document/1337/

E. P Kromer, D. Eisner, S. R. Holmer, A. Muntze, and G. A. J. Riegger, “Aortic input
impedence and neurohormonal activation in patients with mild to moderate chronic
congestive heart failure,” Cardiovascular Research, vol. 26, no. 3, pp. 265-272, Mar. 1992.
[Online]. Available: https://academic.oup.com/cardiovascres/article-lookup/doi/10.
1093/cvr/26.3.265

R. Kelly and D. Fitchett, “Noninvasive determination of aortic input impedance
and external left ventricular power output: a validation and repeatability study of
a new technique,” Journal of the American College of Cardiology, vol. 20, no. 4, pp.
952-963, Oct. 1992. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/
073510979290198V

C.T. Ting, K. P. Brin, S.J. Lin, S. P Wang, M. S. Chang, B. N. Chiang, and E C. Yin, “Arterial
hemodynamics in human hypertension,” Journal of Clinical Investigation, vol. 78, no. 6,
pp. 1462-1471, Dec. 1986. [Online]. Available: http://www.jci.org/articles/view/112737

G. E Mitchell, J.-C. Tardif, J. M. O. Arnold, G. Marchiori, T. X. O’Brien, M. E.
Dunlap, and M. A. Pfeffer, “Pulsatile hemodynamics in congestive heart failure,”
Hypertension, vol. 38, no. 6, pp. 1433-1439, Dec. 2001. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/hy1201.098298


https://www.ahajournals.org/doi/10.1161/01.CIR.62.1.105
https://www.ahajournals.org/doi/10.1161/01.CIR.62.1.105
https://www.ahajournals.org/doi/10.1161/01.CIR.63.6.1305
https://www.ahajournals.org/doi/10.1161/01.CIR.63.6.1305
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/oxfordjournals.eurheartj.a061690
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/oxfordjournals.eurheartj.a061690
https://linkinghub.elsevier.com/retrieve/pii/0002914985906599
http://ieeexplore.ieee.org/document/1337/
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/26.3.265
https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/26.3.265
https://linkinghub.elsevier.com/retrieve/pii/073510979290198V
https://linkinghub.elsevier.com/retrieve/pii/073510979290198V
http://www.jci.org/articles/view/112737
https://www.ahajournals.org/doi/10.1161/hy1201.098298

Bibliography

[96]

[97]

(98]

[99]

(100]

[101]

(102]

[103]

[(104]

[105]

J.-P. L. Dyjardin and D. N. Stone, “Characteristic impedance of the proximal aorta
determined in the time and frequency domain: a comparison,” Medical & Biological
Engineering & Computing, vol. 19, no. 5, pp. 565-568, Sep. 1981. [Online]. Available:
http://link.springer.com/10.1007/BF02442770

B. I. Levy, D. Babalis, P. Lacolley, P. Poitevin, and M. E. Safar, “Cardiac
hypertrophy and characteristic impedance in spontaneously hypertensive rats,”
Journal of Hypertension, vol. 6, no. 4, pp. S110-111, Dec. 1988. [Online]. Available:
http://journals.lww.com/00004872-198812040-00031

J. K.-J. Li, “Time domain resolution of forward and reflected waves in the aorta,” IEEE
Transactions on Biomedical Engineering, vol. BME-33, no. 8, pp. 783-785, Aug. 1986.
[Online]. Available: http://ieeexplore.ieee.org/document/4122389/

N. Westerhof, N. Stergiopulos, M. I. Noble, and B. E. Westerhof, Snapshots of hemody-
namics: an aid for clinical research and graduate education. Springer, 2018.

P. B. Dobrin, “Mechanical properties of arteries,” Physiological Reviews, vol. 58, no. 2, pp.
397-460, Apr. 1978.

S. Laurent, J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz,
B. Pannier, C. Vlachopoulos, I. Wilkinson, H. Struijker-Boudier, and on behalf of the
European Network for Non-invasive Investigation of Large Arteries, “Expert consensus
document on arterial stiffness: methodological issues and clinical applications,”
European Heart Journal, vol. 27, no. 21, pp. 2588-2605, Sep. 2006. [Online]. Available:
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehl254

B. Pannier, A. P Guérin, S. J. Marchais, M. E. Safar, and G. M. London, “Stiffness of
capacitive and conduit arteries: prognostic significance for end-stage renal disease
patients,” Hypertension, vol. 45, no. 4, pp. 592-596, Apr. 2005. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/01.HYP.0000159190.71253.c3

G. E Mitchell, S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg,
J. A.Vita, D. Levy, and E. J. Benjamin, “Arterial stiffness and cardiovascular events: the
Framingham heart study,” Circulation, vol. 121, no. 4, pp. 505-511, Feb. 2010. [Online].
Available: https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.886655

C. Vlachopoulos, K. Aznaouridis, D. Terentes-Printzios, N. Ioakeimidis, and
C. Stefanadis, “Prediction of cardiovascular events and all-cause mortality with
brachial-ankle elasticity index: a systematic review and meta-analysis,” Hypertension,
vol. 60, no. 2, pp. 556-562, Aug. 2012. [Online]. Available: https://www.ahajournals.org/
doi/10.1161/HYPERTENSIONAHA.112.194779

S. C. Millasseau, A. D. Stewart, S. J. Patel, S. R. Redwood, and P. J. Chowienczyk,
“Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and

33


http://link.springer.com/10.1007/BF02442770
http://journals.lww.com/00004872-198812040-00031
http://ieeexplore.ieee.org/document/4122389/
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehl254
https://www.ahajournals.org/doi/10.1161/01.HYP.0000159190.71253.c3
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.886655
https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.112.194779
https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.112.194779

Bibliography

[106]

(107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

34

heart rate,” Hypertension, vol. 45, no. 2, pp. 222-226, Feb. 2005. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/01.HYP.0000154229.97341.d2

P. Palatini, A. Benetos, G. Grassi, S. Julius, S. E. Kjeldsen, G. Mancia, K. Narkiewicz,
G. Parati, A. C. Pessina, L. M. Ruilope, A. Zanchetti, and European Society of Hyperten-
sion, “Identification and management of the hypertensive patient with elevated heart
rate: statement of a European Society of Hypertension Consensus Meeting,” Journal of
Hypertension, vol. 24, no. 4, pp. 603-610, Apr. 2006.

I. Tan, M. Butlin, B. Spronck, H. Xiao, and A. Avolio, “Effect of heart rate on arterial
stiffness as assessed by pulse wave velocity,” Current Hypertension Reviews, vol. 13, Jul.
2017. [Online]. Available: http://www.eurekaselect.com/154381/article

P Albaladejo, X. Copie, P. Boutouyrie, B. Laloux, A. D. Déclere, H. Smulyan,
and A. Bénétos, “Heart rate, arterial stiffness, and wave reflections in paced
patients,” Hypertension, vol. 38, no. 4, pp. 949-952, Oct. 2001. [Online]. Available:
https://www.ahajournals.org/doi/10.1161/hy1001.096210

E. Haesler, X. Lyon, E. Pruvot, L. Kappenberger, and D. Hayoz, “Confounding
effects of heart rate on pulse wave velocity in paced patients with a low degree of
atherosclerosis,” Journal of Hypertension, vol. 22, no. 7, pp. 1317-1322, Jul. 2004.
[Online]. Available: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:
landingpage&an=00004872-200407000-00013

P. Lantelme, C. Mestre, M. Lievre, A. Gressard, and H. Milon, “Heart rate: an important
confounder of pulse wave velocity assessment,” Hypertension, vol. 39, no. 6, pp.
1083-1087, Jun. 2002. [Online]. Available: https://www.ahajournals.org/doi/10.1161/01.
HYP.0000019132.41066.95

B. Spronck, M. H. G. Heusinkveld, W. P. Donders, A. G. W. de Lepper, J. Op’t Roodt, A. A.
Kroon, T. Delhaas, and K. D. Reesink, “A constitutive modeling interpretation of the
relationship among carotid artery stiffness, blood pressure, and age in hypertensive
subjects,” American Journal of Physiology. Heart and Circulatory Physiology, vol. 308,
no. 6, pp. H568-582, Mar. 2015.

E. R. Nye, “The effect of blood pressure alteration on the pulse wave velocity,” British
Heart Journal, vol. 26, pp. 261-265, Mar. 1964.

M. Gao, H.-M. Cheng, S.-H. Sung, C.-H. Chen, N. B. Olivier, and R. Mukkamala, “Esti-
mation of pulse transit time as a function of blood pressure using a nonlinear arterial
tube-load model,” IEEE transactions on bio-medical engineering, vol. 64, no. 7, pp.
1524-1534, Jul. 2017.

M. L. Muiesan, M. Salvetti, A. Paini, C. Monteduro, C. A. Rosei, C. Aggiusti, E. Belotti,
E Bertacchini, G. Galbassini, D. Stassaldi, M. Castellano, and E. A. Rosei, “Pulse wave


https://www.ahajournals.org/doi/10.1161/01.HYP.0000154229.97341.d2
http://www.eurekaselect.com/154381/article
https://www.ahajournals.org/doi/10.1161/hy1001.096210
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-200407000-00013
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00004872-200407000-00013
https://www.ahajournals.org/doi/10.1161/01.HYP.0000019132.41066.95
https://www.ahajournals.org/doi/10.1161/01.HYP.0000019132.41066.95

Bibliography

[115]

(116]

[117]

(118]

[119]

[120]

[121]

[122]

[123]

velocity and cardiovascular risk stratification in a general population: the Vobarno
study,” Journal of Hypertension, vol. 28, no. 9, pp. 1935-1943, Sep. 2010.

H. J. Joo, S.-A. Cho, J.-Y. Cho, J. H. Park, S. ]J. Hong, C. W. Yu, and D.-S. Lim,
“The relationship between pulse wave velocity and coronary artery stenosis and
percutaneous coronary intervention: a retrospective observational study,” BMC
Cardiovascular Disorders, vol. 17, no. 1, Dec. 2017. [Online]. Available: http:
//bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-017-0476-7

A. R. Khoshdel, S. L. Carney, B. R. Nair, and A. Gillies, “Better management of
cardiovascular diseases by pulse wave velocity: combining clinical practice with clinical
research using evidence-based medicine,” Clinical Medicine and Research, vol. 5, no. 1,
pp. 45-52, Mar. 2007. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1855337/

Y. Shi, P Lawford, and R. Hose, “Review of zero-D and 1-D models of blood flow
in the cardiovascular system,” BioMedical Engineering OnlLine, vol. 10, no. 1, p. 33,
2011. [Online]. Available: http://biomedical-engineering-online.biomedcentral.com/
articles/10.1186/1475-925X-10-33

N. Westerhof, J.-W. Lankhaar, and B. E. Westerhof, “The arterial Windkessel,” Medical &
Biological Engineering & Computing, vol. 47, no. 2, pp. 131-141, Feb. 2009. [Online].
Available: http://link.springer.com/10.1007/s11517-008-0359-2

J. R. Womersley, An elastic tube theory of pulse transmission and oscillatory flow in
mammalian arteries. Wright-Patterson Air Force Base, Ohio,: Wright Air Development
Center, Air Research and Development Command,, 1957.

C. Papapanayotou, Y. Cherruault, and B. De La Rochefoucauld, “A mathematical model
of the circle of willis in the presence of an arteriovenous anomaly,” Computers & Mathe-
matics with Applications, vol. 20, no. 4-6, pp. 199-206, 1990.

N. Stergiopulos, D. E Young, and T. R. Rogge, “Computer simulation of arterial flow with
applications to arterial and aortic stenoses,” Journal of Biomechanics, vol. 25, no. 12, pp.
1477-1488, Dec. 1992.

M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen, “Numerical
simulation and experimental validation of blood flow in arteries with structured-tree
outflow conditions,” Annals of biomedical engineering, vol. 28, no. 11, pp. 1281-1299,
2000.

J. P Mynard and J. ]J. Smolich, “One-dimensional haemodynamic modeling
and wave dynamics in the entire adult circulation,” Annals of Biomedical
Engineering, vol. 43, no. 6, pp. 1443-1460, Jun. 2015. [Online]. Available: http:
/Nink.springer.com/10.1007/s10439-015-1313-8

35


http://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-017-0476-7
http://bmccardiovascdisord.biomedcentral.com/articles/10.1186/s12872-017-0476-7
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855337/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855337/
http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-10-33
http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-10-33
http://link.springer.com/10.1007/s11517-008-0359-2
http://link.springer.com/10.1007/s10439-015-1313-8
http://link.springer.com/10.1007/s10439-015-1313-8

Bibliography

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

36

M. Willemet, S. Vennin, and J. Alastruey, “Computational assessment of hemodynamics-
based diagnostic tools using a database of virtual subjects: application to three case
studies,” Journal of Biomechanics, vol. 49, no. 16, pp. 3908-3914, Dec. 2016. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0021929016311551

S. Vennin, Y. Li, M. Willemet, H. Fok, H. Gu, P. Charlton, J. Alastruey, and P. Chowienczyk,
“Identifying hemodynamic determinants of pulse pressure: a combined numerical and
physiological approach,” Hypertension, vol. 70, no. 6, pp. 1176-1182, Dec. 2017. [Online].
Available: https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.117.09706

N. Westerhof, E Bosman, C. J. De Vries, and A. Noordergraaf, “Analog studies of the
human systemic arterial tree,” Journal of biomechanics, vol. 2, no. 2, pp. 121-143, 1969.

P. Reymond, Y. Bohraus, E Perren, E Lazeyras, and N. Stergiopulos, “Validation of a
patient-specific one-dimensional model of the systemic arterial tree,” American Journal
of Physiology. Heart and Circulatory Physiology, vol. 301, no. 3, pp. H1173-1182, Sep.
2011.

J. A. Sidey-Gibbons and C. J. Sidey-Gibbons, “Machine learning in medicine: a practical
introduction,” BMC medical research methodology, vol. 19, no. 1, pp. 1-18, 2019.

J. D. Rodriguez, A. Perez, and J. A. Lozano, “Sensitivity analysis of k-fold cross validation
in prediction error estimation,” IEEE transactions on pattern analysis and machine
intelligence, vol. 32, no. 3, pp. 569-575, 2009.

R. D. Riley, J. Ensor, K. I. Snell, T. P. Debray, D. G. Altman, K. G. Moons, and G. S. Collins,
“External validation of clinical prediction models using big datasets from e-health
records or ipd meta-analysis: opportunities and challenges,” bmj, vol. 353, 2016.

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between
two methods of clinical measurement,” Lancet (London, England), vol. 1, no. 8476, pp.
307-310, Feb. 1986.

A. Liaw and M. Wiener, “Classification and regression by randomForest,” R News, vol. 2,
no. 3, pp. 18-22, 2002. [Online]. Available: http://CRAN.R-project.org/doc/Rnews/

A. J. Smola and B. Schélkopf, “A tutorial on support vector regression,” Statistics
and Computing, vol. 14, no. 3, pp. 199-222, Aug. 2004. [Online]. Available:
http://link.springer.com/10.1023/B:STC0.0000035301.49549.88

Robert Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser.,
vol. B, pp. 267-288, 1996.

A. Natekin and A. Knoll, “Gradient boosting machine: a tutorial,” Frontiers in
Neurorobotics, vol. 7, 2013. [Online]. Available: http://journal.frontiersin.org/article/10.
3389/fnbot.2013.00021/abstract


https://linkinghub.elsevier.com/retrieve/pii/S0021929016311551
https://www.ahajournals.org/doi/10.1161/HYPERTENSIONAHA.117.09706
http://CRAN.R-project.org/doc/Rnews/
http://link.springer.com/10.1023/B:STCO.0000035301.49549.88
http://journal.frontiersin.org/article/10.3389/fnbot.2013.00021/abstract
http://journal.frontiersin.org/article/10.3389/fnbot.2013.00021/abstract

Bibliography

[136]

[137]

[138]

[139]

[140]

(141]

[142]

[143]

[144]

[145]

T. Chen and C. Guestrin, “XGBoost: a scalable tree boosting system,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining - KDD ’16. San Francisco, California, USA: ACM Press, 2016, pp. 785-794.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=2939672.2939785

O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad,
“State-of-the-art in artificial neural network applications: A survey,” Heliyon, vol. 4,
no. 11, p. e00938, 2018.

S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing in java program-
ming. Springer, 2003, pp. 81-100.

D. E. Adkins, “Machine learning and electronic health records: a paradigm shift,”
American Journal of Psychiatry, vol. 174, no. 2, pp. 93-94, Feb. 2017. [Online]. Available:
http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2016.16101169

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. ~MIT Press, 2016, http:
/ /www.deeplearningbook.org.

N.J. Dabanloo, E Adaei, and A. M. Nasrabadi, “The performance of neural network in
the estimation of cardiac output using arterial blood pressure waveforms.” 2011, oCLC:
990720998. [Online]. Available: http://ieeexplore.ieee.org/servlet/opac?punumber=
6156579

H. Xiao, A. Qasem, M. Butlin, and A. Avolio, “Estimation of aortic systolic blood pressure

from radial systolic and diastolic blood pressures alone using artificial neural networks,
Journal of Hypertension, vol. 35, no. 8, pp. 1577-1585, Aug. 2017.

J. M. J. Huttunen, L. Kiarkkdinen, and H. Lindholm, “Pulse transit time estimation of
aortic pulse wave velocity and blood pressure using machine learning and simulated
training data,” PLOS Computational Biology, vol. 15, no. 8, p. €e1007259, Aug. 2019.
[Online]. Available: http://dx.plos.org/10.1371/journal.pcbi.1007259

J. M. Huttunen, L. Karkkdinen, M. Honkala, and H. Lindholm, “Deep learning
for prediction of cardiac indices from photoplethysmographic waveform: a
virtual database approach,” International Journal for Numerical Methods in
Biomedical Engineering, vol. 36, no. 3, Mar. 2020. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3303

S. V. Greve, M. K. Blicher, R. Kruger, T. Sehestedt, E. Gram-Kampmann, S. Rasmussen,
J. K. Vishram, P. Boutouyrie, S. Laurent, and M. H. Olsen, “Estimated carotid—femoral
pulse wave velocity has similar predictive value as measured carotid—femoral pulse
wave velocity,” Journal of Hypertension, vol. 34, no. 7, pp. 1279-1289, Jul. 2016. [Online].
Available: https://journals.lww.com/00004872-201607000-00009

37


http://dl.acm.org/citation.cfm?doid=2939672.2939785
http://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2016.16101169
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://ieeexplore.ieee.org/servlet/opac?punumber=6156579
http://ieeexplore.ieee.org/servlet/opac?punumber=6156579
http://dx.plos.org/10.1371/journal.pcbi.1007259
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3303
https://onlinelibrary.wiley.com/doi/abs/10.1002/cnm.3303
https://journals.lww.com/00004872-201607000-00009

Bibliography

[146] C. Vlachopoulos, D. Terentes-Printzios, S. Laurent, P. M. Nilsson, A. D. Protogerou,
K. Aznaouridis, P. Xaplanteris, I. Koutagiar, H. Tomiyama, A. Yamashina, P. P. Sfikakis, and
D. Tousoulis, “Association of estimated pulse wave velocity with survival: a secondary
analysis of SPRINT,” JAMA Network Open, vol. 2, no. 10, p. €1912831, Oct. 2019. [Online].
Available: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2752573

[147] R.E.Climie, C. C. Mayer, R. M. Bruno, and B. Hametner, “Addressing the unmet needs
of measuring vascular ageing in clinical practice-European COoperation in science and
technology Action VascAgeNet,” Artery Research, vol. 26, no. 2, p. 71, 2020. [Online].
Available: https://www.atlantis-press.com/article/125938376

[148] V.Bikia, T. Fong, R. Climie, R.-M. Bruno, B. Hametner, C. Mayer, D. Terentes-Printzios,
and P. Charlton, “Leveraging the potential of machine learning for assessing vascular
ageing: state-of-the-art and future research,” European Heart Journal - Digital Health,
Accepted 2021.

38


https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2752573
https://www.atlantis-press.com/article/125938376

Chapter 2

Non-invasive cardiac output and central sys-
tolic pressure from cuff pressure and pulse
wave velocity

Vasiliki Bikia !, Stamatia Pagoulatou !, Bram Trachet !, Dimitrios Soulis 2, Athanase D.
Protogerou 3, Theodore G. Papaioannou 2, Nikolaos Stergiopulos !

! Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Switzerland
2 Biomedical Engineering Unit, 1! Department of Cardiology, “Hippokration” Hospital,
Medical School, National and Kapodistrian University of Athens, Greece
3 Department of Pathophysiology, Medical School, National and Kapodistrian University of
Athens, Greece

Published in IEEE Journal of Biomedical and Health Informatics, 2020.

Abstract

We introduce a novel approach to estimate cardiac output (CO) and central (aortic) systolic
blood pressure (aSBP) from non-invasive measurements of peripheral cuff pressure and
carotid-femoral pulse wave velocity (cfPWV). The adjustment of a previously validated one-
dimensional arterial tree model is achieved via an optimization process. In the optimization
loop, compliance and resistance of the generic arterial tree model, as well as aortic flow,
are adjusted so that simulated brachial systolic and diastolic pressures and cfPWV converge
towards the measured brachial systolic and diastolic pressures and cfPWV. The process is
repeated until full convergence in terms of both brachial pressures and cfPWV is reached. To
assess the accuracy of the proposed framework, we implemented the algorithm on in vivo
anonymized data from 20 subjects and compared the method-derived estimates of CO and
aSBP to patient-specific measurements obtained with Mobil-O-Graph apparatus (central
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pressure) and two-dimensional transthoracic echocardiography (aortic blood flow). Both CO
and aSBP estimates were found to be in good agreement with the reference values achieving
an RMSE of 0.36 L/min and 2.46 mmHg, respectively. Our one-dimensional model can
be successfully “tuned” to partially patient-specific standards by using non-invasive, easily
obtained peripheral pressure data. The in vivo evaluation demonstrated that this method
can potentially be used to obtain central aortic hemodynamic parameters in an accurate and
non-invasive way.
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2.1. Introduction

2.1 Introduction

Central hemodynamic quantities, such as cardiac output (CO) and central aortic pressure, have
been generally shown to be more powerful predictors of clinical outcomes than corresponding
measurements obtained in the peripheral arteries such as the radial, femoral or brachial
arteries [1; 2]. Critically ill or intensive care unit patients often require continuous assessment
of cardiac output for diagnostic purposes or for guiding therapeutic interventions [3; 4; 5],
whereas several studies have shown the pathophysiological importance of central systolic
blood pressure (aSBP) as the critical index for diagnosis and prevention of cardiovascular
diseases [6; 7; 8]. But despite the diagnostic importance of central measurements, their clinical
use is severely hampered by their invasive nature (in case of central blood pressure) or cost and
need of special equipment and training (in case of aortic blood flow). Peripheral measurements
such as systolic and diastolic brachial pressure, on the other hand, are non-invasive and can
be monitored by any clinician on a regular basis [9]. This has given rise to substantial research
efforts to develop non-invasive methods for estimating central cardiovascular hemodynamics
from peripheral measurements [10; 11].

The state of the art of methods for obtaining central hemodynamic indices is based on gen-
eralized transfer functions (TF) [12; 13; 14], pulse wave analysis [15; 16; 17] or parameter
estimation from pooled clinical data [18; 19]. None of these techniques accounts for the
specific arterial tree properties of each subject [20; 21]. The use of mathematical models
constitutes a valuable tool to investigate patient-specific aspects of aortic hemodynamics,
which are difficult to assess in clinical practice. Patient-specific modelling is an emerging
field which promises to have a significant impact on clinical practice [22]. Data assimilation
has significantly promoted patient-specific modelling and has become an area of increasing
interest [23].

Prompted by previous work in the field, the hypothesis formed in this study is that central
hemodynamic parameters (i.e. CO and aSBP) can be accurately estimated by making better
use of the patient-specific information that is embedded in easily obtained non-invasive
cuff pressure and pulse wave velocity measurements. In contrast to current methods using
population-based generalized TFs, this study relies on a generalized one-dimensional (1-D)
model which is further partially personalized by using additional measurements of brachial
systolic blood pressure (SBP) and diastolic blood pressure (DBP), and carotid-to-femoral
pulse wave velocity (cfPWV). The method developed and presented in this study combines
insights from both cardiovascular modelling and data assimilation methodology. This is done
by feeding the 1-D model with the minimum number of inputs that allows for the calibrated
prediction of the aforementioned central hemodynamic parameters. The proposed framework
was evaluated with in vivo data from a population of 20 healthy adults [24]. Estimated values
of CO and aSBP were compared to the corresponding CO and aSBP values measured by a
non-invasive, validated, automated, oscillometric sphygmomanometer (Mobil-O-Graph) and
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transthoracic two-dimensional (2-D) echocardiography — Doppler, respectively.

2.2 Methods & materials

Brief description of the generic 1-D arterial tree model

In this study, we adopted a validated 1-D model of the systemic arterial tree that has been pre-
viously described by Reymond et al. [25]. The arterial tree, as depicted in Figure 2.1, includes
the main arteries of the systemic circulation, including a detailed network representation of
the cerebral circulation and the coronary circulation. In brief, the governing equations of the
model are obtained by integration of the longitudinal momentum and continuity of the Navier-
Stokes equations over the arterial cross section. Flow and pressure waves throughout the
vasculature are obtained by solving the governing equations with proper boundary conditions
using an implicit finite-difference scheme. The arterial segments of the model are considered
as long tapered tubes, and their compliance is defined by a nonlinear function of pressure
and location as proposed by Langewouters [26]. The arterial wall behavior is considered to be
nonlinear and viscoelastic according to Holenstein et al. [27]. Local arterial compliance is cal-
culated after approximating pulse wave velocity (PWV) as an inverse power function of arterial
lumen diameter, following the physiological values reported in the literature. Resistance of
the peripheral vasculature is accounted for by coupling the distant vessels with three-element
Windkessel models. At the proximal end, the arterial tree either receives a prescribed input
aortic flow waveform or is coupled with a time-varying elastance model for the contractility
of the left ventricle [28; 29]. Further details on the 1-D model can be found in the original
publications [25; 22]. The model has been thoroughly validated and is able to predict pressure
and flow waves in good quantitative and qualitative agreement with in vivo measurements,
particularly with respect to shape details.

Rationale of the proposed method

This work applied an optimization algorithm in order to partially adjust the generic 1-D arterial
tree model to the specific patient under consideration. The rationale behind this methodology
was that adjusting (some of the) model parameters may be sufficient to approximate the
measured data [31]. Before the optimization, the aim was to identify the most sensitive
parameters which mainly drive the variability of the model output.

In our analysis, peripheral SBP, DBP, and cfPWV were the model outputs. Our approach was
based on the idea that, for any individual with a given set of peripheral SBP, DBP, and cfPWV
values, there will be only one solution for the arterial tree model. Thus, if we simultaneously
adjust the properties of the model and the input aortic blood flow to capture a given peripheral
cuff pressure and cfPWYV, then this allows for the calibrated derivation of CO and aSBP. In
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Figure 2.1 — Schematic representation of the 1-D model of the systemic circulation: (A) The
main systemic arterial tree. (B) The aortic arch and the coronary network. (C) The principal
abdominal aortic branches. (D) The detailed cerebral arterial tree, which is connected via
the carotid arteries (segments 5 and 15) and the vertebrals (segments 6 and 20) to the main
arterial tree (A). Adapted from [30].

order to identify and select those highly sensitive parameters, we performed a parameter
identifiability analysis [32].

Parameter identifiability analysis

The arterial tree model of this study is fully characterized by its geometry, the distensibility
of all arterial segments, and the peripheral impedances (described by terminal compliances
and resistances). Additionally, aortic flow is needed as proximal boundary condition. Table
2.1 summarizes the input and output parameters of the arterial tree model. For the following
analysis, brachial pressure was selected as the peripheral pressure model output. Thus, the
three model outputs became brachial SBP (brSBP), brachial DBP (brDBP), and cfPWV.

The sensitivity matrix V = {v; j} was calculated for the entire set of parameters in the arterial
tree model using the finite difference approximation [33]. Subsequently, the scaled sensitivity
matrix was estimated to provide the dimension-free sensitivity information. The scaled
sensitivity matrix S = {s; ;} was derived from the following formula:

vijc
Sij:S_Ci (2.1)

Here, according to Brun et al. [32], A6 was set equal to the original set of parameters 6, i.e. 0,
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Table 2.1 — Input and output parameters of the 1-D arterial tree model.

Corresponding variable Value

Input parameter
Blood density o 1050 kg/m?3
Blood viscosity U 0.004 Pa.s

arterial_diameter, (no_segments)x1 vector,
Geometry .

arterial_length (no_segments)x1 vector

Distensibility
and terminal C (no_segments)x1 vector
compliance
Tot‘a I peripheral R (no_terminal_segments)x1 vector
resistance
Aortic flow*® aortic_flow (no_time_points)x1 vector
Output
Pressure waves pressures (no_segments)x(no_time_points) vector
Flow waves flows (no_segments)x(no_time_points) vector
“The aortic flow is characterized by three parameters, namely the Quax, Tperioa> Tsystole-
no_segments: number of arterial segments, no_time_points: length of the time signal.

whereas the optimal choice for SC; was the mean value of the experimental observations for
each model output (Table 2.2).

The scaled sensitivity matrix is presented in Figure 2.2. Each element s;; corresponds to the
sensitivity of the model output j =1,2,3, i.e. brSBP, brDBP, and cfPWV, with respect to changes
in the parameter i = 1,...,7, i.e. arterial_length, arterial_diameter, C, R, Tperiod, Tsystoter Qmax-

In order to acquire additional information on the sign and distribution of the values in each
column j, 67" [32] was computed and ranked in decreasing order. The decreasing order
of 5;."“” provided the parameters’ importance ranking [32] (Table 2.3). It was observed that
Qmax» C, Tperioa, and R were the most sensitive parameters. Since the sensitivities of the
remaining parameters were not negligible, we chose to approximate them using previously
published data (more details are provided in section 2.2.4. Tuning of The Generic 1-D Arterial
Tree Model section). We assumed that the approximations do not impose a significant error in
the results due to their small sensitivities. Based on the aforementioned considerations and
the resulted importance ranking, we partitioned the set of parameters 8 into two components

(0%, 07) with K=3, namely:
9£ ={C,R, Qmax};glj-; ={arterial_length,arterial_diameter, Tyeriod, Tsystole}-

Only the component 6£ was to be estimated from the measured data whereas the component
917_; (i.e. the remaining parameters) was fixed at a priori value; this is a common practice in
identifiability analysis [32]. Specifically, the arterial_length was adjusted based on height,

44



2.2. Methods & materials

Table 2.2 — Description of the Af; and SC; parameters.

Parameter Unit ABj =0,

Qmax mL/s 436.23

C mL/mmHg 1.90

Tperiod ms 790.00

R mmHg.s/mL 1.00
arterial_length? cm 180.00
arterial_diameter? cm 2.94

Tsystole ms 270.00

State Unit SC;

Brachial SBP mmHg 117.55
Brachial DBP mmHg 77.25

cfPWV m/s 6.89

% Arterial length is defined with respect to height. The reference state of the arterial tree
model corresponds to an individual with a height equal to 180 cm.

b Arterial diameter is defined with respect to the diameter of the aorta. The alteration of
the diameter for the different arteries is done uniformly.

Table 2.3 - List of the input model parameters’ importance ranking.

Parameter ) i 5
Qmax 0.52
R 0.48
Tperi od 0.42
C 0.26
T ystole 0.11
arterial diameter 0.1

arterial_length 0.08

arterial_diameter was determined based on [34], Tperi0q Was directly assigned the patient’s
measured HR and Tyy5;07 Was set to a HR-related value according to [35]. The hypothesis
was that the subset of parameters, i.e. C, R,Q;4x, can be uniquely estimated from the model
outputs, i.e. brSBP, brDBP, and cfPWV.

In order to verify our hypothesis, we had to confirm that the set HIE was identifiable or, in
other words, that 6; was sufficient to detect the variability in the model outputs (i.e. brSBP,
brDBP, and cfPWV). If 9; is classified as identifiable, then we can deduce that brSBP, brDBPB,
and cfPWV can estimate 9£ in a unique way.

The joint influence of the parameters 9; parameters on the model output was considered. To
this respect, the collinearity of parametric sensitivity was used [32]. To calculate collinearity,
we first normalized the scaled sensitivities S and we defined the collinearity index yx as
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Figure 2.2 — Scaled sensitivity matrix for the entire set of input parameters of the 1-D arterial
tree model. Adapted from [30].

follows:

1 1
K= - - =
minyp=1IISkBIl /Ax

(2.2)

where Sk is the submatrix of the normalized sensitivity matrix that consists of the columns
that correspond to 0L and Ag is the smallest eigenvalue of SIT<S_K [32], [36].

According to Brun et al. [32], a subset of parameters can be classified as identifiable if the
collinearity index yx is smaller than 20. In our analysis, yx was found to be equal to 6.90 and
thus, we deduced that there is a unique solution of model parameters for a given set of model
outputs (i.e. brSBP, brDBPB and cfPWV).

Tuning of the generic 1-D arterial tree model

After proving the validity of our primary hypothesis, the following step was to find the adjusted
input model parameters that produce as output the given measured data (i.e. brachial SBP and
DBP, and cfPWV). In this respect, the global compliance and global peripheral resistance of the
entire arterial tree as well as the input aortic flow were adjusted. This was done by multiplying
the compliance of each arterial segment by a common scaling factor. Similarly, a different
scaling factor was used to adjust all peripheral resistances. Finally, Q. was modified by
multiplication with a third scaling factor. An optimization algorithm was employed to derive
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the optimal compliance, resistance and aortic flow peak scaling factors. Once the “tuning” was
completed, the 1-D model used the adjusted parameters and produced the flow and pressure
waves for every segment of the arterial tree. From the solution, we were able to obtain the flow
and pressure at the aorta, namely to compute the CO and aSBP.

In this approach, the distensibility and the terminal compliance (C) of each arterial segment
were modified in a uniform way for young individuals. For older or hypertensive subjects,
stiffening was considered as nonuniform and more pronounced in the proximal aortic path
[37]. The importance of age-related nonuniform aortic stiffening for central hemodynamics
and wave reflections has been demonstrated in previous studies [38]. In order to account
for this, data for the age-related local nonuniform aortic stiffening were obtained from [39].
The nonuniform stiffening of the aorta was considered by changing the relative regional
distensibility of the proximal aorta (segments 1-95-2-14-18-27 of the arterial tree in Figure 1.1)
through multiplication with an age-related proximal factor (Figure 3). Therefore, two scaling
factors were considered: a global scaling factor multiplied with all arterial compliances and
a proximal scaling factor that was additionally multiplied only with the compliance of the
proximal aorta. This was to satisfy the relative relation between the proximal distensibility
and the peripheral distensibility. Figure 2.3 reports the scaling factors with respect to age. The
goodness of fit was high with a coefficient of determination, R2, equal to 0.99.
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Figure 2.3 — Variation of the proximal scaling factor with respect to age for adjusting the relative
distensibility of the proximal aorta. Adapted from [30].

Resistance (R) was altered in a uniform way for all terminal vessels in the model. Aortic flow
was prescribed as an uncalibrated generic physiological wave, which was scaled with respect
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to amplitude and time during the adjustment process. This concept was implemented in an
iterative optimization process. The reason for employing an optimization process was to avoid
searching the entire input model parameters space. Moreover, the geometry of the arterial
vessels (i.e. arterial length and arterial_diameter) was adjusted based on the age, gender,
height, and body surface area (BSA) of each subject. For this purpose, data which associate
aortic diameter size with age, gender and BSA were used from previous studies [34]. The length
of the generic arterial tree segments was normalized and, subsequently, was multiplied by a
scaling factor so as to be adjusted to the height of each subject.

Optimization process

A schematic representation of the optimization algorithm is shown in Figure 2.4. In the
first optimization iteration, the structure of the algorithm was as follows: an uncalibrated
generic aortic flow curve was used as initial input to the model (Figure 2.5). For the generic
uncalibrated aortic flow, an “average” physiologically shaped wave was selected. The scaling
was performed based on the adjustment of three characteristic values, i.e. the velocity peak
(Qmax), time period (Tperioq), and systolic duration (Tsyszoze) (Figure 2.5). The Tperioq of the
uncalibrated aortic wave was adjusted with respect to the measured HR. Previously published
data on the HR-related changes in systolic duration [35] were used to adapt the Ty 07 With
respect to the given HR. Therefore, only Q4 remained to be optimized. A random Q 4,
and therefore SV, was selected for the initial aortic flow input. The 1-D model subsequently
computed all flows and pressures throughout the arterial tree, including the measured vari-
ables (brachial SBP and DBP, cfPWV) as well as the unknown quantities of interest (CO, aSBP).
The model was expected to produce an inaccurate prediction of flows and pressures due to
inaccurate model parameters and the inaccurate input aortic flow for the specific subject
under investigation. Similarly, the calculated cfPWV was likely not the same as the measured
cfPWV.

To address this issue, the non-invasive, patient-specific measurements were integrated into the
model using a gradient-based optimization algorithm. The reference compliance, resistance
and Q,,4x of the generic arterial tree were adjusted by multiplication with different scaling
factors until brachial SBP, DBP, and cfPWV were correctly predicted for the uncalibrated input
aortic flow (Figure 2.5). Scaling factors for the compliance were chosen so that a range of
[0.10, 3.80] mL/mmHg was covered for total arterial compliance. These values correspond
to an extensive range of arterial tree stiffness values [26; 40]. The reference total peripheral
resistance in the model was 1 mmHg.s/mL. The scaling factor (which was multiplied with
the reference resistance) varied within [0.40, 2.00] in order to cover normal values of total
peripheral resistance (e.g. [0.40, 2.00] mmHg.s/mL) [41]. For scaling Q;4x, the scaling factors
were chosen so as the corresponding cardiac output is within [2.00, 8.00] L/min [42]. The
limits were chosen so that the corresponding quantities as well as the pressure and flow values
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Figure 2.4 — Schematic representation of the optimization process for predicting non-invasive
cardiac output and central systolic blood pressure. Adapted from [30].

generated by the arterial tree model comply with physiological hemodynamic conditions. It
is to be emphasized that all parameter ranges were wider than what is to be physiologically
expected, in order provide the optimization algorithm with sufficient solution space. The
optimization loop ran and the process was repeated until convergence in terms of both
brachial pressure and cfPWV was reached. The tolerated error for capturing brachial SBP
and DBP was set to 0.01 %, whereas for cfPWV value it was 0.01 %. A maximum number of
iterations (V. zlvffarx =100) was also defined for each optimization process. If the algorithm did
not converge, the process was repeated starting from a different initial solution. In order to
ensure that the algorithm was not stalled by a local minimum, several runs starting from a

different random initial solution were performed.

Model-derived pulse wave velocity

The PWV was derived using the tangential method [43]. The method uses the intersection
point of two tangents on the arterial pressure wave as a characteristic marker. The first tangent
is defined as the line that passes tangentially through the initial systolic upstroke, i.e. the
maximum of the first derivative. The second tangent line is the horizontal line passing through
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Figure 2.5 — Uncalibrated generic aortic flow waveform that is used as input to the 1-D arterial
tree solver. Adapted from [30].

the minimum pressure point. Since our cohort study consists of cfPWV data, the method was
applied to estimate the pulse transit time (PTT) between the carotid artery and the femoral
artery. Total arterial length was determined by summation of the lengths of the arterial
segments within the transmission path, i.e. the relevant carotid-femoral path (segments 5, 3,
2,14, 18,27, 28, 35, 37, 39, 41, 42, 44 of the generic arterial tree in Figure 2.1). Finally, the value
of cfPWV was calculated by dividing the total length by the PTT.

Measurement protocol

A preliminary assessment of the proposed methodology was carried out by testing the predic-
tions of the method against in vivo data that were previously collected by Papaioannou et al.
[24]. The study population included twenty-four subjects who were referred for non-invasive
cardiovascular risk assessment. Subjects with risk factors or those receiving medication were
also enrolled. Patients with aortic valve disease or arrhythmias were excluded. The measure-
ment protocol was approved by the Scientific Board of Laikon General Hospital (Reference no:
E53610/7/2013).

For each subject, brachial pressure waves were recorded at the brachial artery by oscillometric
sphygmomanometry using the Mobil-O-Graph device (I.E.M. GmbH, Stolberg, Deutschland)
[44; 45]. Central pressure waves were extracted by mathematical transformation of brachial
pressure waves [46]. The cfPWV was computed using the SphygmoCor apparatus (AtCor
Medical Pty Ltd, West Ryde, Australia). Pressure waves were recorded at the carotid and femoral
artery by applanation tonometry (Millar SPT-301, Millar Instruments, TX, USA) as previously
described [24]. SphygmoCor also provided recordings of the radial pressure waves [23] and was
subsequently used for acquiring the aortic pressure waves [18] through the use of a generalized
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transfer function. Despite the fact that both devices yield equally precise estimates, in the
analysis we made use of the data measured with the Mobil-O-Graph in order to ensure that
brachial and aortic pressure were recorded simultaneously. Especially, the brachial pressure
data were used as input variables to the method and the corresponding central pressure data,
measured using the same device, were used for the validation. Nevertheless, for the sake of
completeness of this work, a second analysis using the SphygmoCor-derived pressure data

was performed.

Two measurements of the aortic peak velocity profile at the ascending aorta were performed
via transthoracic two-dimensional echocardiographic examination [24]. For this study’s simu-
lations, the average of the two measured signals was used. Aortic diameters were extracted
from Doppler M-mode and CO was computed by applying the Witzig-Womersely theory [47]
considering the profile of peak velocity. Cross-sectional area was assumed to be constant.

All the recorded waveforms were exported as raw data and subject to additional preprocess-
ing. For further details on the measurements protocol, the reader is referred to the original
publication [24].

Validation of the method-derived estimations

Out of the 24 subjects, four were excluded from the study due to unreliable or insufficient
data. The population samples included both women (n =9) and men (n = 11) and covered an
age range of 38.1+12.6 years. For each subject, the processed data from the recordings were
used and the previously described methodology was adapted. The descriptive values of the
hemodynamic parameters and clinical characteristics of the study population (n = 20) are
reported in Table 2.4.

We first implemented the method using as input the peripheral pressure data from the Mobil-
O-Graph device. The model CO estimates were compared to the in vivo measurements via
transthoracic echocardiography, whereas the predicted aSBPs were evaluated against the
respective Mobil-O-Graph central pressure data. Then, the process was repeated using as
input the peripheral pressure data from SphygmoCor. Similarly, COs were validated using as
reference the transthoracic echocardiographic data and aSBP predictions were compared to
the in vivo measurements from the respective SphygmoCor-derived central pressure data.

Sensitivity to measurement errors

In order to assess the sensitivity of the method to errors in the measurements of the brachial
pressure and the cfPWYV, the analysis was repeated on the entire study population after (i) de-
creasing the brSBP with 10 % and (ii) increasing the brSBP with 10 %. In a similar approach, the
effect of overestimating and underestimating the cfPWV value with 10 % was also examined.
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Statistical analysis

The agreement, bias, and precision between the method-derived predictions and the in vivo
data were evaluated by using the Pearson’s correlation coefficient (), intraclass correlation
coefficient (/CC), the Bland-Atman analysis and the root mean square error (RMSE). The
statistical analysis was performed using the software package Prism (Prism 6, GraphPad
Software Inc., San Diego, USA).

2.3 Results

The comparisons between the model-derived estimations and the reference data are presented
below.

Comparison between the model-derived CO estimates and the reference data

Figure 2.6 shows the comparison between the model-CO estimates and the in vivo measure-
ments via transthoracic echocardiography using the pressure data from the Mobil-O-Graph
device. The corresponding Bland-Altman plot is depicted in Figure 2.6 (lower panel). The
RMSE was found to be equal to 0.36 L/min. In 55 % of the cases, the difference between model-
CO and reference CO was found to be below 0.30 L/min. Parameters of accuracy, correlation
and agreement of CO estimation by the method in comparison to the reference method are
summarized in Table 2.5. Figure 2.7 shows the model-predicted CO values compared to the in
vivo echocardiographic CO values using the SphygmoCor pressure data. The Bland-Altman
plot is given in Figure 2.7 (lower panel). The RMSE was 0.81 L/min and the Pearson’s correla-
tion coefficient was equal to 0.73 (Table 2.5). The difference between model-CO and reference
CO was less than 0.3 L/min for the 25 % of the cases.

Comparison between the model-derived aSBP estimates and the reference data

The scatterplot between the non-invasive aSBP predictions versus the in vivo measurements
from the Mobil-O-Graph is presented in Figure 2.8 (top panel). The method yielded an accurate
estimation of aSBP, with a RMSE of 2.46 mmHg, a Pearson’s correlation coefficient of 0.98 and
a high ICC of 0.98. The Bland-Altman analysis, as given in Figure 2.8 (lower panel), showed a
good agreement between the model and the reference aSBP values. The difference between
model-aSBP and reference aSBP was less than 1.50 mmHg for the 30 % of the cases, whereas
in 60 % of them it ranged between 1.50 and 3.50 mmHg and only 10 % exceeded the 3.50
mmHg. Parameters of precision, correlation and agreement between the estimates and the
real values are reported in Table 2.6. Figure 2.9 shows the aSBP predictions compared to the in
vivo SphygmoCor aSBP values. The Bland-Altman plot is presented in Figure 2.9 (lower panel).
The RMSE was equal to 3.42 mmHg and the Pearson’s correlation coefficient was equal to 0.98
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Table 2.4 — Descriptive hemodynamical parameters and clinical characteristics of the study

population (n

=20).
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Table 2.5 — Parameters of accuracy, correlation and agreement of CO estimation by the model
in comparison to the reference method.

Value Value

Parameter (using Mobil-O-Graph (using SphygmoCor

pressure data) pressure data)
Mean difference [L/min] 0.04 0.04
Standard deviation of 0.36 0.83
difference [L/min]
Limits of agreement [L/min] (-0.66, 0.73) (-1.54, 1.63)
Root mean square error 0.36 0.81
[L/min]
Pearson’s correlation 0.91 0.73
coefficient
Intraclass correlation 0.91 0.69
coefficient

Table 2.6 — Parameters of accuracy, correlation and agreement of aSBP estimation by the model
in comparison to the reference method.

Value Value

Parameter (using Mobil-O-Graph (using SphygmoCor

pressure data) pressure data)
Mean difference [mmHg] -0.27 0.82
Standard deviation of 2.51 3.41
difference [mmHg]
Limits of agreement (-5.07,4.52) (-5.69, 7.33)
[(mmHg]
Root mean square error 2.46 3.42
[(mmHg]
Pearson’s correlation 0.98 0.98
coefficient
Intraclass correlation 0.98 0.97
coefficient
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Figure 2.6 - Comparison between the estimated CO values and the reference in vivo data (using
the Mobil-O-Graph pressure data). Top panel: Scatterplot between the values of CO derived
from the method and the values of CO measured with 2-D transthoracic echocardiography
(solid and dashed line represent equality and linear regression, respectively). Lower panel:
Bland-Altman plot for CO prediction by the model versus 2-D transthoracic echocardiographic
measurement. Limits of agreement are defined by the two horizontal dotted lines. Adapted
from [30].

(Table 2.6). For 20% of the cases, the difference between model-aSBP and reference aSBP was
less than 1.50 mmHg, for 40 % of them it ranged between 1.50 and 3.50mmHg and for the
remaining 40 % it was found to be above 3.50 mmHg.

Sensitivity of model predictions to input parameter measurement errors

Table 2.7 shows the sensitivity of the model predictions in terms of CO and aSBP when a
+10 % error is introduced in the measurements of brachial SBP and cfPWV. In case of an
overestimation of the brSBP, it was noted that CO and aSBP estimates were sensitive to the
erroneously measured brachial SBP with relative (with respect to the actual value) errors of
26.76+£17.01 % and 8.98+5.45 %, respectively. When an underestimation of the brSBP was
assumed, the errors in CO and aSBP were calculated to be -20.67 + 18.11 % and -11.88 + 4.28
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Figure 2.7 — Comparison between the estimated CO values and the reference in vivo data (using
the SphygmoCor pressure data). Top panel: Scatterplot between the values of CO derived
from the method and the values of CO measured with 2-D transthoracic echocardiography
(solid and dashed line represent equality and linear regression, respectively). Lower panel:
Bland-Altman plot for CO prediction by the model versus 2-D transthoracic echocardiographic
measurement. Limits of agreement are defined by the two horizontal dotted lines. Adapted

from [30].

%, respectively.

Likewise, a deliberate error of +10 % was imposed to the cfPWV measurement. The algorithm
was re-employed for the new input. The aSBP prediction seemed to be more robust to errors
in cfPWV measurements than to errors in brSBP measurements (Table 2.7). A 10 % error in
the in vivo cfPWV rendered small errors in the aSBP estimations, equal to -4.34 + 4.41 % and
-3.74 + 4.03 %, respectively. Relatively higher deviations of -12.73 + 6.23 % and 11.84 + 9.56 %

were reported for the CO estimates.
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Figure 2.8 — Comparison between the estimated aSBP values and the reference in vivo data
(using the Mobil-O-Graph pressure data). Top panel: Scatterplot between the values of aSBP
derived from the model and the values of aSBP measured with Mobil-O-Graph (solid and
dashed line represent equality and linear regression, respectively). Lower panel: Bland-Altman
plot for aSBP prediction by the model versus in vivo measurement using the Mobil-O-Graph
device. Limits of agreement are defined by the two horizontal dotted lines. Adapted from [30].

2.4 Discussion

In the present study, we implemented and assessed a novel method for predicting CO and
aSBP based on non-invasive measurements of peripheral (brachial) pressure and pulse wave
velocity. The method is based on the adjustment of a generic 1-D arterial model using the
non-invasive recordings of the brachial cuff-based systolic and diastolic blood pressures and
cfPWV, which are easily obtained in a clinical setting. The 1-D dimensional model of the
arterial tree has been thoroughly validated in vivo and provides realistic flow and pressure
waveforms [25; 22]. An optimization process was developed in order to fuse the computational
model with the measurement data. We adjusted arterial model parameters such that model
predictions fit the non-invasive recordings and thus render the generic model closer to a
patient-specific model. This study demonstrated that creating a version of the generalized CV
model closer to each patient’s standards can potentially enhance the accuracy in the CO and
aSBP prediction.
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Figure 2.9 — Comparison between the estimated aSBP values and the reference in vivo data
(using the SphygmoCor pressure data). Top panel: Scatterplot between the values of aSBP
derived from the model and the values of aSBP measured with SphygmoCor (solid and dashed
line represent equality and linear regression, respectively). Lower panel: Bland-Altman plot
for aSBP prediction by the model versus in vivo measurement using the SphygmoCor device.
Limits of agreement are defined by the two horizontal dotted lines. Adapted from [30].

Patient-specific models of the human vasculature are confronted with significant challenges
that pertain to the unique characteristics of each individual. Geometry, in particular, cannot
be completely defined for each arterial segment throughout the vasculature. In this study, the
geometry of an individual was approximated by using data from a previously published study
[34]. These data allowed for an estimation of the aortic size without the need for additional
complicated or costly measurements. As anticipated, the aortic size approximation slightly
deviated from the actual aortic dimension. However, having at our disposal the aortic diame-
ter values (directly measured from echocardiography), we observed that the approximated
diameter of the ascending aorta did not differ significantly from the true measured values (the
difference was equal to 0.25 + 0.44 cm).

Peripheral non-invasive pressure measurements proved to be adequate to adjust the arterial
tree model and were demonstrated to be informative to predict aortic hemodynamics. CO
and aSBP estimates were found to be in good agreement with the reference methods. Figure
2.10 shows an aortic pressure waveform as resulted from the 1-D model. The model-derived
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Table 2.7 — Estimates of relative errors in CO and aSBP after introducing: (i) a 10 % error in
the brachial SBP measurement and (ii) a £10 % error in the cfPWV measurement.

Introduced error

CO estimate error [%)]

aSBP estimate error [%]

mean+SD mean+SD
+10 % brSBP 26.76+17.01 8.98+5.45
-10 % brSBP -20.67+18.11 -11.88+4.28
+10 % cfPWV -12.73+6.23 -4.34+4.41
-10 % cfPWV 11.84+9.56 -3.74+4.03

aortic pressure wave bears all the characteristic details and shape of a physiological pressure
signal. This observation further strengthens the physiological relevance of our results. To
our knowledge, this novel work constitutes the first method that makes use of only three
easily obtained inputs (e.g. non-invasive brSBP and brDBP, and PWV) to successfully adjust
a 1-D generic arterial tree model and accurately predict hemodynamics at the aortic root
(e.g. CO and aSBP). The fusion of clinically relevant non-invasive data with theory-based
modelling avoids simplified assumptions that have been proposed by previous studies [18; 48].
Additionally, it should be noted that the clinical application of the proposed framework is
highly facilitated by the fact that PWV can be routinely measured in clinical practice and has
been identified as an independent predictor of cardiovascular disease [49; 50; 51], especially
when it can be translated in conjunction with pressure measurements.

We performed an identifiability analysis as proposed by Brun et al. in order to identify the
most sensitive parameters that drive the variability in the model output (i.e. brSBP, brDBP,
and cfPWV). This analysis can be very informative to guide the strategy for inverse problem-
solving methods. The sensitivity matrix demonstrated that Q,,,, was the most sensitive
determinant of the model output, which may be explained from the fact that aortic flow
serves as the proximal boundary condition. Total peripheral resistance, Tperioq and arterial
compliance followed. The sensitivity to Ter;oq Was directly addressed by exploiting the HR
information. The high sensitivities of compliance and resistance can most likely be attributed
to our selection of the model outputs, namely bSBP and brDBP, and thus pulse pressure (PP)
and mean arterial pressure (MAP). Arterial compliance is a major determinant of PP [52] and
total peripheral resistance dictates MAP [53].

The mitigation of errors that are inevitably present in clinical measurements challenges the
reliability of oscillometric devices. The majority of automatic cuff devices for measuring blood
pressure are based on generalized models to estimate blood pressure from an oscillogram [54].
This can limit the accuracy of the device in a certain pressure range. A noteworthy approach
has been proposed by Liu et al. [55]. They used a physiologic model in conjunction with model
fitting [56]. The method has achieved to maintain blood pressure estimation accuracy whereas
it was proven to be less sensitive to common physiologic deviations in the oscillogram. Here,
artificial errors in brSBP and cfPWV measurements were manually introduced in a discrete way
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in order to study the effect of each error on the predictions. However, it should be emphasized
that measurements errors in brSBP and cfPWV may also happen concurrently and be highly
interdependent.

The sensitivity analysis in measurements’ errors in brSBP and cfPWV demonstrated evidence
that the CO and aSBP predictions are expected to be more sensitive to errors in brSBP than
to errors in cfPWV. The aSBP prediction seems to be determined mainly from the brSBP
information, while brSBP is rather sensitive to the resistance (sensitivity matrix, Figure 2.2)
that dictates the mean blood pressure. The strong sensitivity of aSBP estimation to brSBP
errors is to be expected, since the input brSBP and the estimated aSBP are strongly related
to mean blood pressure, which is practically the same in both central and peripheral arterial
sites.

CfPWV, on the other hand, is related to arterial compliance, which is a weaker determinant of
stroke volume and CO, compared to arterial resistance and by extension to mean pressure,
as also described in earlier work by Stergiopulos et al. [57]. In our analysis, this is clearly
demonstrated in the scaled sensitivity matrix (Figure 2.2); the sensitivity between cfPWV
and Q,4x, and thus CO, is approximately 2.5 times smaller (equal to 0.42) compared to the
sensitivity between brSBP and Q4 (equal to 1.00).

In order to evaluate the method’s predictions, data from Mobil-O-Graph device were used.
However, SphygmoCor data were also available and, therefore, we additionally compared our
method’s estimates using the data from the SphygmoCor device. Overall, a better performance
was observed when pressure data from Mobil-O-Graph were used. It is possible that the
discrepancies in CO and aSBP estimations between the two office devices may be attributed to
differences between the two measurement techniques. First, differences exist in the technique
of signal acquisition as well as the arterial site of recording; Mobil-O-Graph uses oscillometry
at the brachial artery level and SphygmoCor uses applanation tonometry at the radial or
carotid artery. Furthermore, differences exist in the computational method of central blood
pressure derivation; Mobil-O-Graph applies the ArcSolver as previously described in [58; 59]
and [60], whereas SphygmoCor applies a generalized transfer function [18]. The central
aortic pressure derived from Mobil-O-Graph is simultaneously recorded with the brachial
pressure. In contrast, SphygmoCor uses a generalized transfer function to transform the
radial pressure wave into aortic pressure wave [48]. Since brachial pressure is the one that
drives the optimization process, Mobil-O-Graph’s simultaneous brachial and central pressures
acquisition may potentially lead to a more accurate aortic-peripheral PP amplification and
thus more accurate prediction. Additionally, SphygmoCor’s generalized transfer function is
likely to deviate from our partially individualized method at a greater extent than Mobil-O-
Graph’s “per patient” scheme. Finally, differences in measurement accuracy between the two
apparatuses may be also due to different calibration methods [60].

Part of the state of the art has focused on the improvement of the already available generalized
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TFs. Swamy et al. have presented a work on an adaptive generalized TF using information on
the wave propagation delay time between aortic and peripheral pressure waves [61]. However,
this information was obtained using prior knowledge of the aortic flow. Some of the previous
authors have proposed an improved adaptive generalized TF using arterial wave transmission
and reflection coefficient information [62]. Their results have showed significant accuracy
improvement in aSBP estimations (RMSE equal to 3.43 mmHg), especially in patients with low
PP amplification.

Hahn et al. have introduced a novel approach on the central aortic pressure wave from
measured peripheral pressure wave by employing an individualized transmission line (TL)
model [63]. The method was evaluated on swine data and achieved a high correlation of
0.92 between the predicted aSBP and the reference aSBP. Nevertheless, the use of a TL model
may be regarded as a simplification due to the actual curvature of the arterial line and the
multiple reflection sites that may not be accurately described by a lumped terminal impedance.
Moreover, the methods presented above employ a single pressure waveform and thus, the
individualization is considered to be more simplified compared to a technique that fuses
multiple non-invasive measurements.

Approaches comparable to ours have been developed to address the challenges of patient-
specific hemodynamic monitoring. Tosello et al. [64] have proposed a new technique for
determining central blood pressure using a multiscale mathematical model which is adjusted
based on age, height, weight, brachial pressure, left ventricular end-systolic and end-diastolic
volumes and aortic PWV. The estimation derived from their method presented low perfor-
mance (significant overestimation of 7.8 mmHg for aSBP prediction) when compared against
data from the SphygmoCor device. In their work, a large number of input variables are needed,
including also central qualities (e.g. end-systolic and end-diastolic volumes). Here, however,
aSBP can be predicted with a higher accuracy and by using fewer input parameters for the
partial individualization of the model. Therefore, this simplifies the measurement process
and potentially decreases the total cost of monitoring. Recently, Guala et al. published a
validation of the same multiscale model using invasive catheter data [65]. Their model pro-
vided an underestimation of both central systolic and diastolic pressure values; the difference
between the invasive aortic pressure and the model-derived estimates was 4.30+16.70 mmHg
for central systolic pressure and 3.80 + 10.40 mmHg for central diastolic pressure. Validation
using invasive data should be conducted for our proposed methodology, so as to be able to
perform a fair comparison between the performance of the two models.

Additionally, important cardiovascular risk predictors have recently been estimated from the
fusion of multiple non-invasive measurements (i.e. pulse pressure waveforms at the arm and
the ankle) [66]. The method provides predictions of central SBP and PP, PP amplification, and
PTT. The RMSE for aSBP was reported to be rather low (1.99 mmHg). An advantage of the
technique is that it also yields the entire central pressure waveform. Nevertheless, the use of a
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lumped-parameter model to describe the arterial tree may not be sufficient for considering
the intermediate reflections between the central and the distal arterial sites. Hence, this
may be considered as a simplification when compared to a complete model of the systemic
circulation.

A particularly interesting study was performed by Swamy et al. [67], in which CO is estimated
using peripheral pressure waves from multiple arterial sites. In the proposed methodology,
the aortic pressure wave is computed by applying a multichannel blind system identification
algorithm [68]. The concept is based on the assumption that an arterial path between two
arterial sites can be described by a transfer function of a finite impulse response (FIR) filter.
The filter parameters were defined through a deconvolution algorithm. Subsequently, CO
was estimated via fitting a Windkessel model to the computed aortic pressure wave. The
lumped parameters of the Windkessel model (compliance and resistance) were calculated by
extracting the time constant from the aortic pressure wave. Although this method illustrated
an effective way of identifying CO (with a normalized RMSE of 12.9 %), it constitutes a relatively
simplified approach which is based on a mathematical transfer function with less physiological
information on the patient-based cardiovascular system in comparison to a complete model
of systemic circulation.

Fazeli and Hahn have also proposed an improved Windkessel approach for individualized CO
and total peripheral resistance (TPR) estimation [69]. Their approach is based on “tuning” a
Windkessel model using measurements of systolic, diastolic, and mean arterial blood pressure.
The method outperformed the standard Windkessel method (prediction improved by 16 %)
providing also an optimal patient- and time-specific time constant that is needed to estimate
CO and TPR. A limitation of the study pertains to the simple linear model that was used to
associate pressure and arterial compliance. This may be far from the actual highly nonlinear
relationship between the two [70] and may affect the validity of the method when applied on a
wider range of pulse pressure values.

Limitations

A number of limitations need to be considered. The gold-standard technique for central
aortic pressure is an invasive, catheter-based measurement. In this study, evaluation was
conducted using central aortic pressure waves obtained from the Mobil-O-Graph device.
Although the Mobil-O-Graph has been successfully validated in the past [44], significant errors
may be present in the Mobil-O-graph estimations. Therefore, the validation presented here is
only of relative and limited value. It cannot be used to demonstrate any potential advantage
in comparison to the existing generalized mathematical models. Similarly, the reference
method used for aortic flow was transcutaneous echocardiography, which can only allow
us to conclude that the prediction of this method is a fair estimate of the true value. Future
studies using gold-standard invasive measurement techniques are required for full validation
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Aortic pressure waveform [mmHg]

Time [s]

Figure 2.10 — Arbitrary aortic pressure waveform that was yielded from the 1-D arterial tree
solver. Adapted from [30].

of the proposed method. From an ethical perspective, it was not possible to perform invasive

measurements in the context of a validation study.

Another limitation lies in the small sample size of older subjects who exhibit high PWV values.
Also, the subject cohort is quite uniform in terms of PP (e.g. standard deviation of PP equal to 4
mmHg). This does not allow us to assess how well the method adapts to large variations in PP.
To further enhance the robustness of the proposed method, validation on a larger population
(including a larger number of patients older than 50 years and a wider range of PP levels)
should be performed.

Furthermore, the integration of previously published data in the adjustment of arterial di-
ameter leads to an “average” version of the 1-D cardiovascular model in terms of geometric
configuration. Even if we tune the model with the patient-specific measurements that we
have at our disposal, the patient-specific character of the method cannot be entirely justified.
However, a fully personalized model would not be possible, since this would require us to
obtain numerous non-invasive and invasive measurements for every individual. Since CO is
known to be particularly dependent on arterial geometry measurements [71], individualized

CO prediction still remains a challenge.

In addition, the use of previously published data on HR-related systolic duration leads to an
approximation of the aortic flow wave. However, the difference between the approximated
Tsystote and the actual Tyys10/¢ (derived from the reference ultrasound aortic flows) was found
to be -10.05 + 6.72 ms and thus not very considerable. Furthermore, the sensitivity analysis
demonstrated that the model outputs were less sensitive to changes in Tsys01¢ (Figure 2.2).
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When the actual systolic duration was used as an input to the model, the CO and aSBP predic-
tions were improved by 0.84 % and 0.63 %, respectively. As anticipated, the more information is
embedded into the system, the more accurate our predictions become. However, our assump-
tions do not seem to significantly underestimate the prediction capacity of our method in the
study population. Moreover, we should comment that the aortic flow wave that we imposed as
a proximal boundary condition had a constant shape (only Qax, Tperioa, and Tsyszore Were
modified), while the systolic duration was defined as a relative approximation with respect to
HR. These points also contribute to characterizing the model as partially patient-specific.

This study demonstrates the method’s capacity to predict absolute CO for each subject. How-
ever, clinical research is particularly interested in monitoring CO changes within the same
patient [72]; especially for patients in the intensive care unit [73]. Thus, another limitation per-
tains to the lack of available data to validate changes in the estimated CO within an individual.
Our future work envisages the evaluation of our method on inter-patient changes in CO.

Another potential limitation may be the inconvenience in acquiring cfPWV. The cfPWV mea-
surement requires sequential recording of the carotid and femoral pressure pulse via appla-
nation tonometry [74; 75]. The measurement process also takes some time to obtain the two
signals sequentially, whereas it is intrusive in that it requires palpation of the femoral pressure
pulse near the groin [76]. Alternatively, the volume-clamp technique [77] proposes the use
of the finger pressure waveform for estimating aSBP and CO. Nevertheless, this technique
excludes the arterial stiffness information embedded in cfPWV which potentially enhances
the physiological relevance of CO calculation.

Nobody can exclude that certain combinations of cardiac and arterial parameters may yield
similar pressure and PWV values. We tested our method on a synthetic case of reduced con-
tractility in the presence of increased total peripheral resistance and assessed its performance.
Particularly, the cardiac contractility was reduced by decreasing the end-systolic elastance
(E¢s) by 20 % while total peripheral resistance was increased by 40 % in order to maintain
pressure at normal levels. This yielded brachial SBP and DBP, and cfPWV, which were isolated
and used as input to the inverse method. After the optimization process, the estimated CO and
aSBP for the case of reduced contractility were close to their real values (-0.21 % error in aSBP
prediction and 3.30 % in CO prediction). Nevertheless, it is possible that there are extreme
cases for which our algorithm may fall short in making an accurate prediction. Therefore,
further investigation on the method’s performance in such cases should be performed in order
to evaluate the potential errors in a larger scale.

Finally, this method has been designed and applied on a healthy population. Hence, its
applicability might be limited in the case of pathological conditions, such as aneurysm or
aortic valve disease, where the relationship between input and output values is significantly
modified and often poorly specified. Investigation of the method’s performance on such
populations could also be of particular interest.
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Conclusion

In conclusion, it was demonstrated that a generic 1-D model of the systemic circulation can be
effectively adjusted to partially patient-specific standards using non-invasive measurements of
brachial pressure and PWV. The in vivo evaluation suggests that this novel method predicts CO
and aSBP with good accuracy and specificity. Further clinical validation against gold-standard
measurements remains to be performed in order to verify that the proposed technique may
be employed for non-invasive CO and aSBP monitoring in the clinical setting.
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Abstract

Monitoring biomarkers of vascular and cardiac function is crucial for cardiovascular disease
identification, treatment, and assessment of therapeutic response. Stroke volume (SV) is
a major biomarker of cardiac function, reflecting ventricular-vascular coupling. Despite
this, hemodynamic monitoring and management seldomly includes assessments of SV and
remains predominantly guided by brachial cuff blood pressure (BP). Recently, we proposed a
mathematical inverse-problem solving method for acquiring non-invasive estimates of mean
aortic flow and SV using age, weight, height, and measurements of brachial BP and carotid-
femoral pulse wave velocity (cfPWV). This approach relies on the adjustment of a validated
one-dimensional model of the systemic circulation and applies an optimization process for
deriving a quasi-personalized profile of an individual’s arterial hemodynamics. Following the
promising results of our initial validation, our first aim was to validate our method against
measurements of SV derived from magnetic resonance imaging (MRI) in healthy individuals
covering a wide range of ages (n=144; age range 18 to 85 years). Our second aim was to
investigate whether the performance of the inverse problem-solving method for estimating
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SV is superior to traditional statistical approaches using multilinear regression models. Our
findings demonstrate that the inverse method yielded higher agreement between estimated
and reference data (r = 0.83, P-value < 0.001) in comparison to the agreement achieved using
a traditional regression model (r = 0.74, P-value < 0.001) across a wide range of age decades.
Contrary to multilinear regression approaches which depend on the collected data for building
the regression equations, the inverse method is not specific to a particular dataset, but relies
on the information provided by patient-specific measurements. This latter aspect enhances
the applicability and generalization ability of the inverse method in the clinical setting and
highlights the importance of physics-based mathematical modelling in improving predictive

tools for hemodynamic monitoring.
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3.1. Introduction

3.1 Introduction

Over the last decades, hemodynamic monitoring has risen to the forefront of efficient and
sustainable healthcare. Monitoring of biomarkers for vascular and cardiac function is a crucial
factor in cardiovascular disease identification, treatment, and assessment of therapeutic
response [1]. Stroke volume (SV) is a major biomarker of cardiovascular function, reflecting the
interdependent performance of the heart and major blood vessels. Despite this, hemodynamic
management of patients via SV remains limited and guided predominantly by simple brachial
cuff blood pressure (BP) observations alone [2]. Such approaches compromise the utility and
effectiveness of hemodynamically-guided interventions [3; 4].

Clinically, the most reliable and accurate technique for cardiac output (CO) estimation is
thermodilution, with SV derived by dividing CO by heart rate (HR). Although thermodilution is
clinically feasible, it is highly invasive and associated with increased risk, and therefore is not
suitable for routine investigation. To overcome these limitations, several less invasive methods
for assessing CO and SV have been developed. Such methods include either minimally
invasive techniques such as pulse contour analysis or oesophageal doppler, which are still
relatively invasive and thus are excluded from the routine clinical examination, or non-invasive
techniques such as inert gas rebreathing, doppler ultrasound or magnetic resonance imaging
(MRD). The latter, while completely non-invasive and reasonably accurate, is expensive and
requires costly equipment and expert technical staff [5]. Moreover, none of these methods are
practical for routine, continuous bedside monitoring of SV.

Recently, we proposed a mathematical inverse-problem solving method for acquiring non-
invasive estimates of mean aortic flow using age, weight, height, and measurements of brachial
BP and cfPWV [6]. CfPWV can be routinely measured in clinical practice, has a satisfactory
repeatability, and has been identified as an independent predictor of clinical outcomes [101],
making it a valuable adjunct to BP measurements in routine assessments of risk. Therefore, the
required (input) measurements for our proposed method are simple and readily available from
the clinic. Moreover, our approach relies on the adjustment of a validated one-dimensional
(1-D) model of the systemic circulation [7] and applies an optimization process for deriving a
quasi-personalized profile of an individual’s arterial hemodynamics. As such, we believe it
provides a more sophisticated method for SV estimation compared with traditional statistical
modelling approaches. An initial clinical validation of the method was conducted in 20
healthy individuals against aortic flow data measured using ultrasound [8], with the results
indicating that the estimates of mean aortic flow were in good agreement with the reference
ultrasound-derived flow values.

Following the promising results of our initial validation, we wished to validate our method
using a more precise MRI-derived measure of SV in a larger group of individuals covering
a wide age range. A second aim was to investigate whether the performance of our inverse
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problem-solving method is superior to traditional statistical approaches using multilinear
regression models.

3.2 Methods & materials

Study population

The dataset used for the current study was obtained from a previous investigation of MRI-
derived regional aortic stiffness and diameter, as part of the Anglo-Cardiff Collaborative Trial
(ACCT) [9]. Subjects were recruited from the Cambridge arm of ACCT and were free of clinical
cardiovascular disease and medication. Approval was obtained from the local research ethics
committee, and written informed consent was obtained from all participants.

Protocol

All participants fasted for 4 h before any measurements were undertaken. Brachial cuff blood
pressure and cfPWV were measured after 10 min of supine rest. After a further 20 min of rest,
participants entered the MRI scanner. Cine phase contrast magnetic resonance imaging (PC-
MRI) sequences were then performed perpendicular to the aorta at the level of the ascending
aorta, located 1 cm distal to the aortic valve.

Aortic flow measurements

Images were acquired using a 1.5-T MRI system (Signa HDx, GE Healthcare, Waukesha, Wis-
consin). An 8-channel abdominal/pelvic coil was placed over the subject lying supine and a
cuff placed around the left arm for brachial BP measurement. Three plane localizer images
were obtained to identify the ascending and descending aorta through to the bifurcation.
A multi-slice, electrocardiographically triggered, black blood fast spin echo sequence was
acquired in an oblique sagittal orientation to demonstrate the full length of the aorta. An
electrocardiographically gated, segmented k-space, cine phase contrast sequence (PC-MRI)
was used with the following parameters: 30° flip angle, 5-mm slice thickness, 280x280-mm
field of view, 6.7 repetition time, 256x256 matrix, 2 excitations, and 150 cm/s through-plane
velocity encoding, with 1 view per segment. The duration of each sequence was approximately
5 min, with a total acquisition time of approximately 30 min. One hundred temporal phases
were retrospectively reconstructed with a true temporal resolution of 2.0 + 6.7 ms due to the
interleaved positive and negative velocity encoding.

PC-MRI images allowed for deriving the aortic flow waveforms. Data analysis was performed
offline using CV Flow software (Medis, Leiden, the Netherlands). Aortic contours were auto-
matically detected in each slice location to obtain aortic flow-time curves and aortic areas
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through the cardiac cycle. In addition, up-sampling to 1 kHz was performed by interpolation
with custom software (version 2.6, Python Software Foundation, Wolfeboro Falls, New Hamp-
shire). In turn, the aortic flow waves permitted the accurate computation of the SV values.
The MRI-derived SV values (SVysgr) were used as the reference data, against which the model-
derived SV estimations (SV;,perse) Were compared. It should be noted that PC-MRI constitutes
a very well validated technique and, most importantly, is considered as the non-invasive gold
standard for SV derivation [10].

Arm cuff pressure and pulse wave velocity

Brachial SBP (brSBPsciiiomerric) and DBP (brDBPysc;i110merric) Were measured in duplicate
in the nondominant arm, according to the British Hypertension Society Guidelines using
a validated oscillometric device (HEM-711A-E, Omron Corp., Matsusaka, Japan). CfPWV
(cfPWVspnygmocor) Was measured using the SphygmoCor (AtCor Medical) device by sequen-
tially recording electrocardiographic-gated carotid and femoral artery waveforms as previously
described [11].

Inverse problem-solving method
1-D arterial tree model

In this study, we adopted a validated 1-D model of the systemic arterial tree that has been
previously described by Reymond et al. [7]. The arterial tree includes the main arteries of
the systemic circulation, including a network representation of the coronary circulation. In
brief, the governing equations of the model are obtained by integration of the longitudinal
momentum and continuity of the Navier-Stokes equations over the arterial cross section.
Flow and pressure waves throughout the vasculature are obtained by solving the governing
equations with proper boundary conditions using an implicit finite-difference scheme. The
arterial segments of the model are considered as long tapered tubes, and their compliance is
defined by a nonlinear function of pressure and location as proposed by Langewouters [12].
The arterial wall behaviour is considered to be nonlinear and viscoelastic according to [13].
Local arterial compliance (C) is calculated after approximating pulse wave velocity (PWV) as an
inverse power function of arterial lumen diameter, following the physiological values reported
in the literature. Resistance of the peripheral vasculature (R) and terminal compliances (C) are
accounted for by coupling the distant vessels with three-element Windkessel models. At the
proximal end, the arterial tree either receives a prescribed input aortic flow waveform or is
coupled with a time-varying elastance model for the contractility of the left ventricle [14; 15].
In this study, we used a generic waveform with fixed shape as input to the arterial tree model.
The aortic flow wave is characterized by three parameters, namely the heart cycle period
(Tperioa), the systolic duration (Tsysz07e), and the aortic flow peak (Q;4x). In order to decrease
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the computational cost of our method, we removed the brain circulation of the original 1-D
model. Three-element Windkessel models were used as terminal boundary conditions at
the left and right common carotid and vertebral arteries. Pressure and flow from the original
configuration were used to derive the parameters of the three-element Windkessel models via
fitting. The purpose of removing the cerebral circulation was to decrease the computational
time of the simulation. The model has been thoroughly validated [7; 16] and is able to predict
pressure and flow waves in good agreement with in vivo measurements. These waves can be
used for pulse wave analysis techniques to derive several parameters of interest.

Simulated pulse wave velocity

CfPWV was derived using the foot-to-foot tangent method [43]. The method uses the in-
tersection point of two tangents on the arterial pressure wave as a characteristic marker.
The first tangent is defined as the line that passes tangentially through the initial systolic
upstroke, i.e. the maximum of the first derivative. The second tangent line is the horizon-
tal line passing through the minimum pressure point. By applying the method, the pulse
transit time (PTT;,,414¢04) between the carotid artery and the femoral artery was estimated.
Total arterial length was determined by summation of the lengths of the arterial segments
within the transmission path, i.e. the relevant carotid-femoral path. Finally, simulated cfPWV
(cfPWV i mularea) Was calculated by dividing the total length by the PTT;nu1ated-

Optimization of the 1-D model

In the current study, we have applied an optimization algorithm in order to partially adjust
the generic 1-D arterial tree model to the specific participant under consideration (Figure 3.1).
The rationale behind this approach was that adjusting some of the model parameters may be
sufficient to approximate the measured data, namely brSBP,¢i110metricy PIDBPoscitiometrics
CfPWVSphygmoCor [17].

The arterial tree model of this study is fully characterized by its geometry, the distensibility of
all arterial segments and the peripheral impedances (described by terminal compliances and
resistances). Additionally, aortic flow is needed as a proximal boundary condition. Identifi-
ability analysis [18] demonstrated that, for any individual with a given set of peripheral SBP,
DBP, cfPWV, HR, and SV values, there will be only one solution for the arterial tree model [6].
Therefore, if the generic arterial tree model modifies its parameters in order to approximate
the measured brSBB, brDBP and cfPWYV, the model will approximate the hemodynamic profile
of the participant under consideration and will yield a partially personalized model. This
personalized model will allow for the derivation of SV.
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Inverse method for derivation of SV

In applying our optimization algorithm, for an individual, the following information is re-
quired: gender, age, height, weight, brSBB, brDBP, HR, and cfPWV. In the first step, the method
uses the demographic data (i.e. gender, age, height, weight) for adjusting the geometry of the
arterial tree model. Arterial length is adjusted in accordance to height. The reference state of
the arterial tree model corresponds to an individual with a height equal to 180 cm. Uniform
adjustment of the arterial lengths is done via multiplication with a common scaling factor.
Arterial diameter is uniformly adjusted based on previously published data that associate
aortic diameter with age, gender, and BSA [19]. This completes the anatomical adjustment of
the arterial tree model.

The inverse method additionally accounts for the non-uniform aortic stiffening which occurs
with aging [20]. For older individuals, stiffening is considered as non-uniform and more
pronounced in the proximal aorta. This gradient in distensibility is adjusted by changing the
relative regional distensibility of the proximal aorta through multiplication with an age-related
proximal factor based on published literature [21].

Subsequently, the T ., ;o4 is computed from the HR, whereas previously published data on
the HR-related changes in systolic duration (Tsyss0ze) [22] are used to adapt the Tyy 51070 With
respect to the measured HR. As a result, the only remaining flow-related parameter to be
optimized for the aortic flow input is Q4.

Following these model adaptations, the optimization algorithm is employed for adjusting
the Qpax, C, R. An arbitrary parameter set of C, R, Q4 is used in the first optimization
iteration of the algorithm. Under all conditions, the 1-D model computes the simulated flows
and pressure waves throughout the arterial tree, including the variables that correspond to
the measured data (brSBPysci110metric» BIDBPoscitiometricy CtPPWVspnygmocor) as well as the
the quantity of interest, namely the SV. The standard (non-optimised) model is expected to
estimate inaccurate flows and pressures (and thus brSBPg; ;1464 and brDBPg; . u14104) due
to the inaccurate input model parameters and the inaccurate input aortic flow for the specific
individual under investigation. Similarly, the cfPWV; ;1404 is Not the same as the measured
ctPWVspnygmocor- To address this issue, the non-invasive, participant-specific measurements
are integrated into the model using a gradient descent optimization algorithm. The reference
C, R, and Q4 of the generic arterial tree are adjusted by multiplication with different scaling
factors until the model-simulated brSBPy; u1ated> PTDBPsimuiated and ctfPWV; i u1atea are
identical with the measured brSBPysci11omerricy PrDBPoscitiomerric, and ctPWVsypyemocor-
Once convergence is achieved, the simulated SV is considered as the final estimation for the
specific participant. A more analytical description of the “tuning” process can be found in the
original publication [6]. The methodology described above was repeated for the entire study
population (n = 144). The estimated SV erse Were compared to the SVyr;. Accuracy was
also assessed independently for the different age groups, i.e. 20-29, 30-39, 40-49, 50-59, 60-69,

83



Chapter 3. Validation of a non-invasive inverse problem-solving method for stroke
volume: do physics-based models add to the traditional statistical approaches?

and geq 70 years.

Finally, we evaluated the errors resulting from the use of an approximated aortic flow wave-
form. We compared the Tsysz01e) Qmax, as well as the time of Qax (tQmax) derived from the
approximated flow waveform to the actual values extracted from the reference MRI aortic
flow waveform. Consequently, we performed one-way ANOVA for the three estimated charac-

teristics across the different age groups to investigate whether an age-dependent effect was

observed.
Non-invasive measurements
: ( i ] H
: d :
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Figure 3.1 — Schematic representation of the optimization process for predicting non-invasive
stroke volume. Adapted from [6]

Multilinear regression analysis

In addition to the modelling analyses described above, we tested the performance of mul-
tilinear regression analysis using SV/r; as the dependent variable. Overall, this approach
allowed us to compare our inverse method with the more traditional multilinear regression
method for estimating SV. For the multilinear regression method, the same parameters used as
inputs to the inverse method were used as independent variables, namely age, gender, weight,
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height, HR, brSBP, brDBP and cfPWV. We followed two different approaches for testing the
performance of multilinear regression to: (i) a train/test split cross validation (CV) (1CV), and
(ii) a 10-fold CV (10CV). For the 1CV approach, 100 out of the 144 participants were kept for
defining the regression coefficients. Subsequently, the resulting regression equation was tested
on the remaining 44 participants. This resulted in one multinear regression model. The 10CV
approach required that the group of 144 participants was randomly split into 10 equal subsets.
One subset was allocated as the testing group to validate the regression equation, while the
other 9 subsets were used for defining the regression coefficients. This procedure was repeated
10 times so that all participants were used for testing. The performance metrics were derived
by the average performance of all 10 models. The reason for adopting two CV approaches
was to facilitate a more complete comparison between the two methods of estimating SV,
i.e. inverse method and multilinear regression. We performed ordinary least squares (OLS)
estimation of the regression coefficients using the statsmodels library [23] for only 1CV setting.
Hypothesis testing for each regression coefficient was realized using the ¢-stastistic.

Statistical analysis

The statistical analysis was performed in Python (Python Software Foundation, Python Lan-
guage Reference, version 3.6.8, Available at http://www.python.org). All values are presented
as means+SD. The agreement, bias and precision between the model estimations (estimated
data) and the reference data obtained from the MRI images were evaluated using the Pearson’s
correlation coefficient (r ), the mean absolute error (MAE), the normalized root mean square
error (NnRMSE) and Bland-Altman analyses [24]. The computed nRMSE was based on the
difference between the minimum and maximum values of the dependent variable (y) and
was computed as RMSE/ (Y ax — Vmin). Linear least-squares regression was performed for the
estimated and reference data. The slope and the intercept of the regression line were reported.
Two-sided P-value for hypothesis tests was calculated using Wald Tests with ¢-distribution of
the test statistic. The null hypothesis was that the slope is zero. One-way analysis of variance
(ANOVA) for unbalanced data (each group had different sample sizes) was performed on the
estimations for the six age groups. A P-value below 0.05 was considered statistically significant.

3.3 Results

Table 3.1 shows the subject characteristics of the study population (n = 144), including the
SVr reference data. The comparisons between the model-derived estimations for SV us-
ing (i) the inverse method (SV;nperse) and (ii) multilinear regression (SVyegression), and the
reference SV g data are presented below for each of the targeted outputs.
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3.3. Results

Estimation of SV using the inverse method

The comparison between SV ,¢rse and SV gy is presented in 3.2. The slope and the intercept
of the regression line were 1.1 (P-value < 0.001) and -8.8 mL, respectively. The nRMSE was
found to be equal to 13.8 %. Bland-Altman analysis yielded a low bias of 1.5 mL and LoA
equal to (-29.7, 32.7) mL. The estimation error was out of the LoA only for the 7 % of the study
population. Variability of the mean difference between estimated and measured SV values was
15.9 mL. Although several overestimations were observed for high values of SV, the majority
of the estimated data were tightly distributed around the line of equality (x =y). The mean
absolute error (MAE) in SV estimation was computed for the different age groups of the study
population (Figure 3.3). The overall variability of the MAE was +2.2 mL (P-value < 0.0001),
while higher MAE values (> 12 mL) were reported for participants aged between 30-49 years.
Estimations of SV had the lowest errors for participants aged between 60-69 years. Overall,
the MAE values differed significantly between age groups of the study population (P-value <
0.001).
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Figure 3.2 - Comparison between the estimated SV values and the reference in vivo data.
Scatterplot and Bland-Altman plot between the estimated SV (using the inverse method) and
the reference SV (using the PC-MRI method). The solid line of the scatterplots represents
equality. In Bland—Altman plots, limits of agreement (LoA) are defined by the two horizontal
dashed lines.
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Figure 3.3 — Variation of the mean absolute error in the stroke volume estimation across the
age groups.

Approximated aortic flow characteristics

Table 3.2 reports the measured (MRI) and estimated aortic flow characteristics for all par-
ticipants and the different age groups. The estimated Tjy;0/ Was slightly lower than the
measured values for all age groups. The correlation between the estimated and measured data
was 7 = 0.6 and the mean absolute percentage error was 10 %. The estimation of Q4 was
satisfactory with r = 0.7, and a small overestimation of the measured values. Finally, assuming
a fixed aortic flow wave shape led to a less precise approximation of tg,,4x with a correlation
coefficient of r=0.41.

Estimation of SV using multilinear regression analysis

Hypothesis testing indicated that all of the specified coefficients, except for those correspond-
ing to gender (P-value = 0.52) and brDBP (P-value = 0.28), were significantly different from
zero. Therefore, the multilinear regression analysis was repeated, excluding gender and brDBP
from the model.

The regression equation for the 1CV scheme was as follows:

SV =-0.34x(age)+0.38x (weight)+40.14x (height)+0.47x (br SBP)—0.45x (HR)—-4.23x (cfPW V).
(3.1)
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3.3. Results

Table 3.2 - Real and estimated aortic flow characteristics according to age group.
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For the 10CV scheme, the comparison between the regression-estimated SV (SVyegression) and
the reference SVyr; is presented in Figure 3.4. The slope and intercept of the regression line
were 0.57 (P-value < 0.0001) and 36.32 mL, respectively. The LoA were equal to +27 mL and
the bias was zero. Results of the new hypothesis testing for the OLS regression coefficients
reported a P-value below 0.01 for all independent variables. Correlation and agreement
between SV egression Values (using both testing schemes) and the reference SVyg; values are
presented in 3.3. Multilinear regression models yielded a lower correlation (r = 0.74) compared
with the inverse method (7 = 0.83), whereas the LoA were narrower in the case of multilinear

regression analysis.
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Figure 3.4 — Comparison between the estimated SV values and the reference in vivo data.
Scatterplot and Bland-Altman plot between the predicted SV (using the multilinear regression
method) and the reference SV (using the PC-MRI method). The solid line of the scatterplots
represents equality. In Bland-Altman plots, limits of agreement (LoA) are defined by the two
horizontal dashed lines.

3.4 Discussion

In the present study, we validated a previously developed inverse problem-solving method for
the estimation of a major hemodynamic parameter, the SV. The original method, based on
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Table 3.3 — Overall comparison between the SV estimates and the reference MRI SV.

meantSD [mlL] r MAE [mL] | Bias (LoA) [mL]
Measured (n=144) 84.4+20.4 - - -
Measured (n=44) * 82.6+19 - - -
Inverse (n=144) 86+27.8 0.83 10.4 1.5 (-29.7, 32.7)
Inverse (n=44) * 84.5+26.1 0.85 10.1 1.9 (-25.4, 29.2)
MLR10CV (n=144) 84.5+15.8 0.74 11 0.02 (-27,27.1)
MLRI1CV (n=44) * 84.6+14.5 0.79 10.8 2 (-20.7, 24.8)

1CV corresponds to train/test split equal to 100/44.

10CV corresponds to 10-fold CV.

*Values correspond only to the test set (44 subjects).

non-invasive measurements of brachial BP and cfPWV [6] underwent a preliminary validation
in a small (n = 20) cohort of human subjects. Here, we have implemented and tested our
method on a further 144 healthy individuals and compared the SV;, ., (estimated data
derived from the inverse method) to SV g; (measured data derived from the non-invasive
gold standard of MRI). Additionally, we have compared the performance of the inverse method
against the predictive capacity of a traditional linear regression approach which uses the same
set of inputs as those used in the inverse method. The two key findings of this study are that
the inverse problem-solving method yields accurate estimates of SV across a wide range of
ages and SV values, in a simple and cost-efficient manner in comparison to PC-MRI; and that
a traditional statistical approach such as multilinear regression analysis is inferior to the more
sophisticated inverse problem-solving technique, for a given set of clinical data.

The SV, together with BP, are fundamental and independent indicators of cardiovascular
function and are essential for the understanding of cardiovascular physiology and pathology
[25]. However, in clinical practice, BP and BP-derived surrogates of SV are often used either
interchangeably with, or as replacements for, direct measurements of flow. This simplification
potentially compromises our understanding of cardiovascular physiology and limits the clini-
cal utility of hemodynamic analyses [3; 26]. While notable research efforts have been made for
estimating SV using BP recordings [27; 28; 29; 30], none of these techniques accounts for the

specific arterial tree properties unique to each individual.

Current doppler ultrasound technologies in the clinical setting include echocardiography,
transoesophageal doppler, and transcutaneous doppler. However, these techniques are as-
sociated with several limitations concerning applicability, cost and accuracy. For instance,
transoesophageal doppler is largely limited to perioperative monitoring as the ultrasound
transducer is inserted into the oesophagus and requires sedation. On the other hand, MRI
allows for improved spatial resolution, larger imaging windows, and higher tissue contrast
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than ultrasound-based techniques. Specifically, PC-MRI allows for accurate determination of
the presence, magnitude, and direction of flow, as well as for the estimation of flow velocity,
volume flow rate, and displaced volumes. In spite of these advantages, MRI remains inconve-
nient and expensive for routine examinations and requires long imaging times. As a result,
monitoring SV effectively in a reliable, simple and cost-efficient way remains an unmet need.

Mathematical modelling of the human cardiovascular system offers valuable tools to investi-
gate patient-specific aspects of arterial hemodynamics, which are difficult to assess in clinical
practice. Data assimilation aims to address relevant challenges and can significantly promote
patient-specific modelling [31]. Rather than relying on simplified equations, we have followed
a data assimilation approach, which is based on the adjustment of a generic 1-D arterial
model using the non-invasive data of the peripheral cuff-based SBP, DBP and cfPWV, which are
easily obtained in a clinical setting. Successful tuning permits the creation of a personalized
cardiovascular model which, consequently, provides access to key hemodynamic information
including SV. The tuning is conducted via an optimization process which allows for the fusion
between the computational model and the measured data. This study, along with the initial
validation [6], demonstrated that creating a partially personalized model can improve the

prediction of SV.

Acquisition of cfPWV requires sequential recording of the carotid and femoral pressure pulse
via applanation tonometry [32]. CfPWV has a satisfactory reproducibility, while being an
independent index of cardiovascular risk and/or mortality [33]. In our study, the role of cfPWYV,
as an index of arterial stiffness, was to facilitate the adjustment of the generic arterial tree
model. Given that arterial distensibility, the inverse of arterial stiffness, constitutes a major
parameter of the vasculature, combining the information provided by arterial stiffness and BP
allowed us to determine aortic hemodynamics and thus SV.

The data from the Anglo-Cardiff Collaborative Trial allowed us to have an approximately
equally split dataset for seven age groups, i.e. 20-29, 30-39, 40-49, 50-59, 60-69, and = 70
years, which enabled an accurate comparison of the age-based results. Predictions of SV were
precise across the different age groups, with a low variability of the MAE (+2.2 mL). Lower
errors were reported for the 6! decade of life. It was observed that the highest absolute errors
corresponded to high values of SV, while predictions were more accurate for SV values below
130 mL. Overall, there was good agreement and high precision between the SV;; yerse and the
SV data across different age decades and SV values, which indicates a robust performance
of the inverse method.

We also investigated the validity of the assumption of a fixed aortic flow shape by comparing
the estimated values of Tyerioar Tsystoter Qmax, and tomax with their actual values. The
inverse method relies on a previously published formula [22] which provides a HR-related
approximation of Ty ;07.. Overall, it was observed that the estimated Tsy 07, values did not
vary significantly between age groups, while the variability within the same age group was also
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rather small. Our results also indicated that the formula slightly underestimated the Ty s;07¢
values. It is likely that this underestimation led to the overestimation of Q4. Given that
the method yielded accurate estimates of SV, for achieving the same SV, an underestimated
Tsystole Wwould naturally lead to an overestimated Q,4x. Finally, assuming a fixed shape for
aortic flow wave resulted in deviations in the value of tg,,4x (mean absolute percentage error
was equal to 47 %). Despite the reported deviations in the timing features of the aortic flow
wave, the estimated Q4 Was in satisfactory agreement with the reference Q4. Given that
our method aims to minimize the required inputs for estimating SV, the use of a fixed shape
wave is a well-advised approximation. Nonetheless, future work will aim to personalize the
aortic flow wave shape with respect to subject characteristics, such as age and gender.

Multilinear regression analysis was performed using two cross-validation approaches, namely
1CV and 10CV. Hypothesis testing was conducted, where the P-value for each independent
variable tested the null hypothesis that the variable has no correlation with the dependent
variable. Coefficients of gender and brDBP were not statistically significantly different to zero,
indicating that there was insufficient evidence in our sample to conclude that a non-zero
correlation exists. All other regression coefficients were reported to be statistically significantly
different from zero.

We compared the inverse method with the conventional multilinear regression analysis. Com-
parison indicated a higher correlation for the former. The LoA were broader for the inverse
method, which also reported a higher bias. This outcome was expected, if we consider that
the regression equation was constructed using a subset of the study population. The MAE
was lower for the inverse method. A notable advantage of the inverse method relies on its
generalization ability. Statistical learning models (such as linear regression) are often prone
to generalization issues. These models are dependent on the specific training data used for
developing the regression equation, and while they are able to provide accurate estimates for
a hold-out (not considered in the process of developing the regression model) test subset of
the same dataset, they are not likely to perform adequately for other independent datasets
[34]. This lack of accuracy might be attributed to differences in the measurement protocol (e.g.
physician preferences, local care standards), medication selection or other clinical decisions
which influence the model development [34]. Specifically, regression analysis requires prior
knowledge of large sets of collected data in order to estimate the coefficients of the regression
equation. On the other hand, the inverse method is able to offer improved performance
without dependency on pre-defined, dataset-derived regression coefficients.

Limitations

The limitations of the inverse method have been acknowledged in the original publication [6].
Another limitation pertains to the synchronization of the clinical measurements. In particular,
contrary to the simulated data produced by the 1-D arterial tree model, which corresponds to
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completely simultaneous pressure and flow waves, the in vivo measurements were performed
with a time difference. Nevertheless, the intervals between the measurements were rather
short and therefore, we may deduce that there was not a high variation in the measured data.
Finally, we used aortic flow data derived from PC-MRI as a reference method with which to
compare our estimated SV values. Although PC-MRI is considered a well-validated method
for aortic flow measurements, the gold standard technique is thermodilution. Next validation
steps will include testing our method against thermodilution-derived SV data.

Conclusion

We have demonstrated that SV can be estimated accurately using a previously developed in-
verse problem-solving method. The method relies on the use of non-invasive, easily-obtained
clinical measurements of brachial cuff BP and cfPWV. Values of SV estimated using our inverse
method compared favorably with the reference SV data derived from PC-MRI. In addition,
agreement between predictions and reference values was higher with the inverse method than
traditional linear regression. These results, along with the inherent generalization limitations
of regression equations, highlight the importance of physics-based mathematical modelling

in improving predictive tools for hemodynamic monitoring.
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Abstract

Cardiac and aortic characteristics are crucial for cardiovascular disease detection. However,
non-invasive estimation of aortic hemodynamics and cardiac contractility is still challenging.
This paper investigated the potential of estimating aortic systolic pressure (aSBP), cardiac
output (CO), and end-systolic elastance (E.s) from cuff pressure and pulse wave velocity
(PWV) using regression analysis. The importance of incorporating ejection fraction (EF) as
additional input for estimating E.s was also assessed. The models, including Random Forest,
Support Vector Regressor, Ridge, Gradient Boosting, were trained/validated using synthetic
data (n = 4,018) from an in silico model. When cuff pressure and PWV were used as inputs,
the normalized-RMSEs/correlations for aSBP, CO, and E.; (best-performing models) were
3.36+0.74 %/0.99, 7.60+0.68 %/0.96, and 16.96+0.64 %/0.37, respectively. Using EF as ad-
ditional input for estimating E.; significantly improved the predictions (7.00+0.78%/0.92).
Results showed that the use of non-invasive pressure measurements allows estimating aSBP
and CO with acceptable accuracy. In contrast, E.; cannot be predicted from pressure signals
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alone. The addition of the EF information greatly improves the estimated E.,. The accuracy of
the model-derived aSBP compared to in vivo measured aSBP (n = 783) was very satisfactory
(5.26+2.30%/0.97). Future in vivo evaluation of CO and E.; estimations remains to be con-
ducted. This novel methodology has the potential to improve the non-invasive monitoring of
aortic hemodynamics and cardiac contractility.
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4.1. Introduction

4.1 Introduction

Clinical parameters directly measured in the heart or at the root of the aorta are crucial
for detection, diagnosis, prognosis, treatment, and management of cardiovascular diseases
[1; 2; 3; 4]. Aortic hemodynamics, such as aortic systolic blood pressure (aSBP) and cardiac
output (CO), are direct and more informative parameters for assessing cardiovascular health
than corresponding measurements obtained at the peripheral arteries [1; 5; 6]. However,
the gold standard techniques for measuring aSBP and CO are catheter-based and expensive
[7; 8]. Furthermore, there is a need for non-invasive estimation of cardiac contractility. End-
systolic elastance (E¢;), i.e. the slope of the end-systolic pressure-volume relation (ESPVR), is
a pivotal determinant of left ventricular (LV) systolic performance and a powerful index of the
arterio-ventricular interaction [4; 9; 10]. Despite its clinical importance, the clinical use of this
measure is limited by the need for invasive acquisition of multiple LV pressure-volume loops
under varying loading conditions [11].

Peripheral blood pressure (BP) measurements acquired by cuff sphygmomanometry have a
fundamental role in the everyday clinical setting [12]. Recognizing the important differences
between peripheral and central aortic pressures, significant efforts were oriented towards
the non-invasive estimation of aortic hemodynamics, in particular aSBP, based on peripheral
pressure measurements [13]. Among commonly used approaches for obtaining aSBP are
generalized transfer functions (GTFs) [14; 15; 16], moving average models [17; 18] and pulse
wave analysis-based methods [8; 19; 20]. Nevertheless, the totality of them relies on the
acquisition of the entire peripheral pressure waveform which can be tedious and susceptible
to errors [21].

Prediction of CO constitutes a more challenging task due to its dependency on the patient-
specific arterial dimensions [22]. Non-invasive CO monitoring has been addressed using
single-beat pulse contour analysis [23; 24; 25] which, however, allows for the derivation of only
an uncalibrated estimation instead of the absolute CO value. Finally, notable studies have been
developed and validated against invasive techniques for estimating E. for a single cardiac
cycle [26; 27]. The first fully non-invasive method was introduced by Chen et al. [26]. They
proposed a simple equation to derive Es from pressure arm cuff, echo-Doppler cardiography,
and electrocardiograms.

Despite the good precision of previous techniques, there has been no holistic and complete
study to investigate the possibility of estimating aortic hemodynamics and cardiac contractility
using readily available non-invasive measurements on the same population. This is mainly
attributed to two inherent limitations, i.e. the lack of invasive data in a large scale and the
ethical limitation to perform invasive measurements on a healthy population, if no diagnostic
reason has been provided.

Cardiovascular models hold a valuable position for addressing the challenge of limited access
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on in vivo data [28]. They constitute a faithful representation of the real cardiovasculature and
allow the study of pathophysiological mechanisms and diseases [29; 30]. Furthermore, they
can provide a complete set of parameters to describe the system, while the simulated signals
are noise-free.

The present study aimed to evaluate whether aortic hemodynamics (i.e. aSBP and CO) and
cardiac contractility (i.e. E.5) can be accurately predicted by the use of brachial systolic blood
pressure (brSBP) and diastolic blood pressure (brDBP), heart rate (HR), carotid-femoral pulse
wave velocity (cfPWV), and, if necessary, ejection fraction (EF). These quantities were chosen
as they are readily available in clinical practice and have been shown to provide information
on the cardiovascular state [2; 3; 4; 31]. To overcome the aforementioned limitations, we
performed our experiments using synthetic data (n = 4,018), which were generated using a
previously validated one-dimensional (1-D) mathematical model of the cardiovascular system
[32]. Regression analysis was performed to establish the relationship between the non-invasive
measurements [brSBP, brDBP, HR, cfPWYV, (and EF)] and the invasive quantities of interest
(aSBP, CO, and E,s). The regression pipeline of the present study is presented in Figure 4.1. A
ten-fold cross validation (CV) scheme was employed for the training/testing of the proposed
approach. We evaluated four models including Random Forest [33], Support Vector Regressor
(SVR) [34], Ridge [35], and Gradient Boosting [36]. In addition, averaging of the multiple
predictions was performed. Two approaches were investigated: (i) prediction of aSBP, CO,
and E,; using brSBP, brDBP, HR, and cfPWV as inputs, and (ii) prediction of E; using brSBP,
brDBP, HR, cfPWV, and EE The accuracy of our prediction was evaluated by comparing the
model-derived values with the reference simulated data. The accuracy of the aSBP model
was subsequently validated using a large clinical dataset including in vivo hemodynamic
measurements (n = 783). Lack of CO and E; in vivo data impeded the clinical evaluation of
the corresponding models.

4.2 Methods & materials

A regression pipeline was applied for estimating aortic hemodynamics and LV contractility
index. The schematic representation of the methodology is presented in Figure 4.1. The input
data comprised brSBP, brDBP, HR, cfPWYV, and EF for every subject. These data were fed to
the regression models to estimate aSBP, CO, and E.;. First, brSBBE, brDBP, HR, and cfPWV were
used as input predictors for all three outputs, i.e. aSBP, CO, and E¢;. A second regression
analysis was performed using EF as an additional input feature only for the estimation of E;.
The outputs of each testing set were blinded and kept as the ground truth against which our
predictions were later compared.

102



4.2. Methods & materials

Subject i Subjects’ measurements
"""""""""""""""""""""""""""" used for the training
brSBPY
\ b'DBP o] brsBP S i
xinput = o | brDBP _T_raﬂ”_g_’ Learning |
¢ HR model |
e | cfPWV ]
@] EF - —I -
————— —
: A] [A] I Adjusting model’s
/\/ : Dataset A] . parameters and
> \ I hyperparameters
P \ :
/ : [A] asep | \ |
-. S . .
R . W [A] co | of [o] =" | Predictive
S e model
»? > aSBP output [A] Ees I °
> CO e ———— d
> co : Left-out subjects’ input
: > Ees measurements used for [ A]
et the testing [ ]

Target data Predicted aSBP or CO

or E¢ for the left-out
subjects

Figure 4.1 — Schematic illustration of the regression pipeline. Brachial systolic blood pressure
(brSBP), brachial diastolic blood pressure (brDBP), heart rate (HR), carotid-femoral pulse wave
velocity (cfPWV), and ejection fraction (EF) were used as features for predicting aortic systolic
blood pressure (aSBP), cardiac output (CO), and end-systolic elastance (E,;). Regression
models were trained to map the input data to the respective target data of interest. The
methodology presented here was followed for each regression process (in terms of set of
inputs, model, and output). Adapted from [37].

Brief description of the in silico model of cardiovascular dynamics

In the present study, we used a 1-D in silico model of the cardiovascular system, that has been
previously described and validated against in vivo data [32]. The arterial tree includes the
main arteries of the systemic circulation, as well as the cerebral circulation and the coronary
circulation. In summary, the governing equations of the model are derived by integrating the
longitudinal momentum and continuity equations over the arterial cross section. Pressure
and flow are acquired across the arterial tree by solving the governing equations employing
an implicit finite-difference scheme. Local arterial compliance is calculated, provided that
pulse wave velocity (PWV) is approximated as an inverse power function of the arterial lumen
diameter. Three-element Windkessel models [38] are coupled to the distal vessels to account
for the peripheral resistance. The contractility of the left ventricle is modeled using a time-
varying elastance model [4; 9]. This elastance model considers a linear ESPVR characterized
by its slope, the E,;, and its intercept, the dead volume, V, as well as a linear end-diastolic
pressure-volume relation characterized by its slope, the end-diastolic elastance (E.y4).
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Synthetic population generation

A dataset of 4,018 synthetic hemodynamic cases was created. The 1-D cardiovascular model
ran using different combinations of arbitrary input parameters. The distributions of the input
parameters were based on physiologically relevant data from the literature. The cardiovascular
parameters were chosen to represent healthy individuals. Due to the limited amount of
probabilistic information, the sampling was selected to be random Gaussian. The values
of E.s and E,4 ranged within [1.03, 3.5] mmHg/mL and [0.05, 0.2] mmHg/mL, respectively
[39; 40; 41]. HR varied between 60 and 100 bpm. The LV filling pressure lied between 7 and
23 mmHg according to [42]. The V; and the time of maximal elastance (t;,4x) were kept
unchanged. Their selected values were equal to the mean values of V; = 15 mL and t;;;4x =
340.00 ms as reported by previously published works [32; 43]. Arterial geometry was modified
to simulate different body types by adapting the length and the diameter of the arterial vessels.
The heights covered a range of [150, 200] cm while the limits for aortic diameter were set to [1.9,
4] cm [44; 45]. Total peripheral resistance varied within 0.5-2 mmHg.s/mL [46]. Total arterial
compliance was chosen within the range of [0.1, 3.8] mL/mmHg in order to account for a wide
range of different values of arterial tree stiffness [47; 48]. It should be noted that evidence of
nonuniform aortic stiffening was integrated for the elderly and hypertensive virtual subjects,
following the methodology described by Bikia et al.[49].

Virtual dataset

The parameters of interest were estimated from the 1-D model-derived pressure and flow
waves (simulation’s outputs). Synthetic brSBP, brDBP as well as HR data were obtained from
the pressure wave at the left brachial artery. Similarly, aSBP was derived from the pressure
waveform at the aortic root. CfPWV was derived using the tangential method [50]. The method
computed the intersection (foot) of two tangents, i.e. the line passing tangentially through
the systolic upstroke and the horizontal line passing through the point of minimum pressure.
Subsequently, the pulse transit time was estimated between the foot of the wave at the two
sites, namely, between the carotid artery and the femoral artery. The length between the
two arterial sites was calculated by summing the lengths of the arterial segments within the
transmission path. Finally, the cfPWV was estimated by dividing the arterial length of the path
by the pulse transit time. Given that the ESPVR was known, the EF was derived by dividing
the blood volume that is ejected within each heartbeat, i.e. the stroke volume (SV), by the
end-diastolic volume (EDV). The value of the E,; was defined as the slope of the ESPVR. Then,
all simulated information was discarded, except for the “measured” brSBP, brDBP, HR, cfPWV,
and EF (inputs) and the aSBP, CO, and E. data (outputs). The total dataset (organized in pairs
of inputs and outputs) was kept for the training/testing process.
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Blending the dataset with random noise

The synthetic data were corrupted with random noise in order to represent a more realistic
data collection. The introduced noise was equivalent to a random relative error within the
range of [- 6, 6] % with respect to the actual value. This magnitude of error was selected based
on published data from previous studies [51].

Clinical dataset

For the clinical validation of the aSBP estimations, we used clinical data from 783 subjects who
underwent non-invasive cardiovascular assessment for research purposes, at the First Univer-
sity Department of Cardiology (Hippokration General Hospital, Athens, Greece). Anonymized
data were analyzed in compliance with the Declaration of Helsinki of the World Medical
Association and the National Regulations for clinical research.

The cfPWV was measured in every subject as previously described [52; 53; 52]. In brief, cfPWV
measurement was performed using the SphygmoCor apparatus (AtCor Medical Pty Ltd, West
Ryde, Australia). First, short-term continuous arterial pressure waveforms were recorded by
use of a hand-held tonometer (Millar, Houston, USA), simultaneously with ECG acquisition (for
the synchronization of the continuous pressure waves recorded at the carotid and the femoral
artery). Then, the recorded pressure waveforms were processed by proprietary software that
automatically computes pulse transit time from the carotid to the femoral artery using the
tangential method [50]. Finally, cfPWV was calculated by the ratio of the distance between
the two recording sites (calculated as the length from the suprasternal notch to femoral artery
minus the length from the carotid artery to the suprasternal notch) to the pulse transit time.
CfPWV measurements were performed with the subject at the supine position after 5 min
resting period.

Non-invasive estimation of the aortic pressure waveforms was performed by the SphygmoCor
System (AtCor Medical Pty Ltd), as previously described [54; 55]. Radial pressure waves were
first recorded by applanation tonometry and central pressure waves were derived by use of
validated transfer functions [56]. Multiple recordings were performed in every subject to
accomplish optimal quality control criteria (quality index: > 85%). Calibration of the recorded
pulse waves was performed using the brachial systolic and diastolic BPs, which were measured
by cuff sphygmomanometry. The accuracy of this apparatus has been previously evaluated by
comparing the estimated aortic BPs with intra-aortic catheter-based BP measurements [54].
Furthermore, the reproducibility of this technique has been also found to be acceptable under
several different conditions and populations [57].
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Table 4.1 - List of the hyperparameters which were chosen to be optimized and their corre-
sponding values.

Model Hyperparameters to be optimized Values
Random Forest nfl;ﬁ}i?ﬁs {502%’7100(;,210(100}
Support Vector Regressor gan(ljma 0. 0({)11', 1)0(') 11’08}1, 0
Ridge alpha {1, 10, 100, 200}
Gradient Boosting 1:13?;:1?5;:22 {100?%3(1): (1)60056,15750}

Regression analysis

Four regression models were trained/tested to estimate the corresponding target outputs.
The models that were employed were Random Forest [33], SVR [34], Ridge [35], and Gradient
Boosting [36]. By definition, a regression model comprises the following components: (i)
the unknown hyperparameters, §, (ii) the independent variables, X;, and (iii) the dependent
variable, Y;. In this analysis, the objective was to investigate whether the regression model can
estimate aSBP, CO, and E,; from single-beat input predictors [brSBP, brDBB, HR, cfPWV, (EF)].
The training/testing scheme was based on a ten-fold CV scheme [58] (Figure 4.2). Following a
ten-fold CV, all cases were divided into ten equal sets in a random manner. In each fold, one
set was left out being the testing group, and the rest of sets were used as the training group to
tune the parameters of the models. Hyperparameter tuning was performed internally in each
fold using GridSearch with a ten-fold CV in order to optimize the § parameters of each fold’s
model (Figure 4.2). The hyperparameters that were chosen to be optimized are reported in
the Table 4.1. The hyperparameters’ values that are not reported in Table 13 were set to their
default value.

We investigated two approaches: (i) one to predict aSBP, CO, and E.; using brSBP, brDBP, HR,
and cfPWV, and (ii) a second one to predict solely E.s using brSBP, brDBP, HR, cfPWV, and EE
Consequently, we evaluated the accuracy of each regression model for every target variable on
a subject level. Additionally, averaging of the multiple predictions was tested as an ensemble
learning approach. The training/testing pipeline was implemented using the Scikit-learn
library [59] in a Python programming environment. The Pandas and Numpy packages were
also used [60; 61].

In silico validation of the model-derived predictions

We first assessed the performance of each regression model for every target variable on a
subject level for the virtual population. Ten-fold CV as described above was used to evaluate
the accuracy of the trained models. Moreover, we calculated the percentages of the cases
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Figure 4.2 — Experimental design for the evaluation of the regression models. The model
evaluation was done using ten-fold cross validation (CV) (external CV). In every external fold,
we performed hyperparameter tuning with ten-fold CV (internal CV). Adapted from [37].

whose aSBP errors met the international standards (< 5 + 8 mmHg) of the European Society of
Hypertension International Protocol [62]. The error threshold for CO was set to 0.3 and 0.5
L/min based on the objective criteria suggested by Critchley and Critchley [63]. Finally, given
that the only clinically acceptable technique for measuring E; is the invasive end-systolic
pressure—volume relationship, there are not meta-analyses using E.¢ data. In this respect, for
the E, values within the range of [1, 4.5] mmHg/mL, thresholds of 0.05 and 0.20 mmHg/mL
should be adequate to provide an accurate estimation of E,;.

Sensitivity analysis for the training size

In order to assess the effect of the number of training samples on our models’ accuracy,
sensitivity analysis was performed. The regression analysis was repeated after decreasing the
training size from 95 to 15 % of the total number of cases. For each training size, the predictions
were evaluated in terms of RMSE between the estimated and reference data. Hyperparameter
tuning was implemented for each different training set under consideration.

In vivo validation of the model-derived aSBP predictions

Moreover, in vivo validation was performed only for the best performing aSBP estimator, i.e.
SVR. The validation was realized in two steps. First, we trained/tested an SVR model using
only in vivo data following the experimental design described in Figure 4.2. Consequently, an
SVR model was trained with the totality of the in silico data (n = 4,018) and, then, was tested on
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Figure 4.3 — Experimental design for the evaluation of the synthetically trained model against
the in vivo data. Adapted from [37].

the in vivo data (n = 783), as depicted in Figure 4.3. During training, hyperparameter tuning
was performed using GridSearch with ten-fold CV.

Feature importance evaluation

We assessed the importance of each input feature using the scores returned by the Random
forest model. The average importance of each feature was then calculated by averaging the
scores from every fold k (k=1, 2, ... 10).

Statistical analysis

The algorithms and the statistical analysis were implemented in Python (Python Software
Foundation, Python Language Reference, version 3.6.8, Available at http://www.python.org).
We performed OLS estimation of the regression coefficients using each of the target parameters,
i.e. aSBP, CO, and E.;, as dependent variable and brSBP, brDBP, cfPWV, HR, and EF (only for
E¢s) as independent variables (using Statsmodels library [64]). Hypothesis testing for each
regression coefficient was realized using the ¢-stastistic. The agreement, bias and precision
between the method-derived predictions and the real values were evaluated by using the
Pearson’s correlation coefficient (r ), the coefficient of determination (R?), the root mean
square error (RMSE), and the normalized root mean square error (WNRMSE). The computed
nRMSE was based on the difference between the minimum and maximum values of the
dependent variable. Bias and limits of agreement as described by [65] were reported. The level
of statistical significance was set at P-value < 0.05.
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4.3. Results

Table 4.2 — Distributions of the parameters of the in silico population (n = 4,018).

Parameter Value (n = 4,018)
min max mean SD
End-systolic elastance [mmHg/mlL] 1.03 3.50 2.29 0.40
End-diastolic elastance [mmHg/mL] 0.05 0.20 0.12 0.09
Filling pressure [mmHg] 7.00 23.00 | 15.12 | 2.10
Total arterial compliance [mL/mmHg] 0.10 3.80 1.86 0.90
Total peripheral resistance [mmHg.s/ml] 0.50 1.30 0.80 0.19
Heart rate [bpm] 61.11 10.00 | 82.57 | 8.15
Aortic diameter [cm] 2.00 4.00 3.00 1.00
Height [cm] 150.00 | 200.00 | 175.00 | 25.00
Brachial systolic blood pressure [mmHg] 81.80 | 199.20 | 133.71 | 25.07
Brachial diastolic blood pressure [mmHg] 39.73 | 125.69 | 76.06 | 21.86
Aortic systolic blood pressure [mmHg] 76.05 | 188.31 | 121.71 | 24.96
Carotid-to-femoral pulse wave velocity [m/s] 5.53 14.27 8.89 1.63
Cardiac output [L/min] 3.26 10.56 5.94 1.22
Ejection fraction [%] 29.74 | 69.31 | 50.83 | 6.81

4.3 Results

Table 4.2 aggregates the cardiovascular parameters of the in silico study population. The
comparisons between the model-derived predictions and the reference data are presented
below for each of the targeted outputs.

Prediction of aSBP, CO, and E.; from brSBP, brDBP, HR, and cfPW

For the four models, the comparison between the predicted aSBP and the actual aSBP is
presented in Table 4.3. The average difference (in absolute value) between the model-aSBP
and the reference aSBP was less than 5 mmHg in 87 % of the total cases for Random Forest, 89
% for SVR, 75 % for Ridge, and 88 % for Gradient Boosting, respectively. Accuracy, correlation
and agreement of model-CO estimates in comparison to the reference data are summarized in
Table 4.4. The difference between model-CO and reference CO was less than 0.3/0.5 L/min in
62/84 % of the population for Random Forest, 65/86 % for SVR, 50/74 % for Ridge, and 63/85 %
for Gradient Boosting. Finally, the E,.; predictions are compared to the reference data in Table
4.5. High errors were reported for all of the regression models, whereas correlation between
the estimated and the reference data was significantly poor.

Prediction of E,.; from brSBP, brDBP, HR, cfPWYV, and EF

The statistics of the second regression analysis for E.;, i.e. after additional knowledge of EF,
are presented in Table 4.6. Differences between the predicted E.s and the actual E,; were
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Table 4.3 — Regression statistics between the model predicted aSBP and the reference aSBP.
The input features include brSBP, brDBP, HR, and cfPWV.

Model Slope Intercept r R? | P-value nRMSE MAE
[mmHg] [%] [mmHg]
RF 1.01 -1.13 0.99 | 0.98 | <0.001 | 3.57+0.79 | 2.61+0.87
SVR 1.01 -1.00 0.99 | 098 | <0.001 | 3.36+0.74 | 2.43+0.77
Ridge 0.99 1.64 0.98 | 0.96 | <0.001 | 4.96+2.04 | 3.73+1.71
GB 1.01 -0.87 0.99 | 0.98 | <0.001 | 3.55+0.88 | 2.58+0.90
Ensemple 1.01 -0.85 0.99 | 0.98 | <0.001 | 3.53+1.00 | 2.59+1.01
Averaging (all)
Ensemble
Averaging 1.01 -1.13 0.99 | 0.98 | <0.001 | 3.40+0.79 | 2.47+0.84
(RE SVR, GB)

Table 4.4 — Regression statistics between the model predicted CO and the reference CO. The
input features include brSBP, brDBP, HR, and cfPWV.

Intercept nRMSE MAE
Model Slope L /minI; r R?> | P-value (%] (L/min]
RF 0.99 0.03 0.95 | 0.90 | <0.001 7.94+0.95 | 0.29+0.08
SVR 1.01 -0.06 0.96 | 0.92 | <0.001 7.60+0.68 | 0.27+0.06
Ridge 0.99 0.05 0.93 | 0.86 | <0.001 | 10.15+1.00 | 0.36+0.05
GR 1.00 0.01 0.95 | 0.90 | <0.001 7.80+0.86 | 0.28+0.07
Ensemple 1.02 -0.11 0.96 | 0.92 | <0.001 7.59+0.72 | 0.27+0.06
Averaging (all)
Ensemble
Averaging 1.01 -0.05 0.96 | 0.92 | <0.001 7.48+0.73 | 0.27+0.06
(RE SVR, GB)

Table 4.5 — Regression statistics between the model predicted E.s and the reference E.;. The
input features include brSBP, brDBP, HR, and cfPWV.

Intercept nRMSE MAE
Model Slope (mmHg 1111)1 L r R?> | P-value (%] (mmHg/mL]
RF 0.93 0.17 0.36 | 0.13 | <0.001 | 17.02+0.63 0.30+0.02
SVR 0.87 0.30 0.35 | 0.12 | <0.001 | 17.11+0.67 0.30+0.02
Ridge 1.00 -0.00 0.37 | 0.14 | <0.001 | 16.96+0.64 0.30+0.02
GB 0.99 0.02 0.33 | 0.10 | <0.001 | 17.23+0.72 0.31+0.02
Ensemble
Averaging 1.01 -0.02 0.37 | 0.14 | <0.001 | 16.98+0.65 0.30+0.02
(all)
Ensemble
Averaging 0.99 0.02 0.36 | 0.13 | <0.001 | 17.02+0.66 0.30+0.02
(RE SVR, GB)
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Table 4.6 — Regression statistics between the model predicted E.s and the reference E,;. The
input features include brSBP, brDBP, HR, cfPWV, and EE

Intercept nRMSE MAE
Model Slope (mmHg /III)IL] r R? | P-value (%] (mmHg/mL]
RF 1.02 -0.04 0.91 | 0.83 | <0.001 | 7.57+0.92 0.13+0.02
SVR 1.00 0.00 0.92 | 0.85 | <0.001 | 7.00+0.78 0.12+0.01
Ridge 0.97 0.06 0.87 | 0.76 | <0.001 | 9.04+1.36 0.16+0.03
GB 1.00 -0.01 0.91 | 0.83 | <0.001 | 7.43+0.81 0.13+0.01
Ensemble
Averaging 1.03 -0.08 0.92 | 0.85 | <0.001 | 7.20+0.76 0.13+0.01
(all)
Ensemble
Averaging 1.02 -0.05 0.92 | 0.85 | <0.001 | 7.04+0.70 0.12+0.01
(RE SVR, GB)

found to be less than 0.05/0.20 mmHg/mL in the 47/78 %, 51/81 %, 39/70 %, and 47/78 % of
the entire population, for Random Forest, SVR, Ridge, and Gradient Boosting, respectively.
The scatterplots and Bland-Altman graphs for the best performing models are provided in
Figures 4.4, 4.5, and 4.6. The plotted data are corrupted with random noise (see Blending
the dataset with random noise in Methods). Table 4.7 presents the frequency of selection for
each hyperparameter value over the ten-fold CV for the best performing model. For the aSBP
and E. estimators, we observed an apparent consistency for the values of the C and gamma
hyperparameters. Specifically, C and gamma were set at 100 and 0.001 for aSBP, and 10 and
0.001 for E., respectively, in the totality of the 10 folds. Such a consistency is not evident for
the CO estimator where C was set at 100 for the 60 % of the times. Nevertheless, gamma was
again consistently selected to be 0.001.

Sensitivity analysis for the training size

The training size, that is, the number of data instances used for training, plays a major role on
the accuracy of the predictions. To investigate the sensitivity to the number of training data,
the training size was modified from 95 to 15 % of the total number of cases (Figures 4.7, 4.8,
and 4.9). For all models except for Ridge, the RMSEs were increased gradually with decreasing
training size. For the Random Forest, SVR, and Gradient Boosting, the RMSEs of the aSBP
predictions were less than 4.20 mmHg. Using Ridge, the RMSE varied at a lesser extent, while it
was consistently higher compared to the rest of the models. For the CO predictions, all RMSE
values were less than 0.50 L/min. In particular, RMSE for SVR did not exceed 0.38 L/min, even
when only the 15 % of the entire population was used for the training. Finally, all RMSEs of E
estimations were equal or below 0.20 mmHg/mL.
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Table 4.7 — Statistical results in percentage of times that the hyperparameter value was selected
during the hyperparameter tuning with ten-fold cross validation process. Values selected
consistently are presented in bold.

Model Hyper- Values aSBP Cco Ees
parameter
Times Times Times
selected [%] | selected [%] | selected [%]

1 0% 0% 0%

C 10 0% 40 % 100 %
100 100 % 60 % 0%

SVR 0.001 100 % 100 % 100 %
gamma 0.01 0 % 0% 0%
0.1 0% 0% 0 %
1 0% 0% 0%

Table 4.8 — Average feature importances for the prediction of aSBP, CO, and E;.

Feature | aSBP | Feature | CO | Feature | E.g
brSBP 0.98 brSBP | 0.54 EF 0.65
brDBP 0.02 cfPWV | 0.33 | brDBP | 0.16
HR 0.004 | brDBP | 0.08 HR 0.11
cfPWV | 0.003 HR 0.04 | cfPWV | 0.05

brSBP | 0.02

Feature importance evaluation

Figure 4.10 presents the correlation matrix reporting the inter-feature correlations, and the
correlations between the inputs and the target outputs. Table 4.8 presents the average impor-
tances of the input features, sorted in a descending order for predicting aSBP, CO, and E.g,
respectively. For estimating aSBP, brSBP was found to be a critical contributor; the importance
level (0.98) indicated that brSBP should be sufficient for estimating aSBP. The features of brSBP
and cfPWV were the dominant contributors in the estimation of CO. Finally, EF was found
to play the most significant role in the E. prediction, followed by brDBP and HR. To further
verify the sensitivity of the model’s performance to the input features, we present the RMSE
variation for different subsets of input features (only for the best performing models) (Table
4.9). For aSBDP it was shown again that the brSBP is the most pivotal predictor of aSBP; when
brSBP was removed from the input features, the RMSE increased significantly. On the contrary,
a precise prediction of CO requires the use of at least one of the brachial BP values; exclusion
of the latter resulted to a deterioration of the model’s performance. Finally, E.; appears to be
mainly sensitive to EF which significantly contributes to the accuracy of the E.; estimation.
Results of the hypothesis testing for the ordinary least squares (OLS) regression coefficients
are summarized in Table 4.10. All of the specified coefficients were statistically significantly

different from zero.
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Table 4.9 — Model performance for the best performing configurations (SVR) using different

subsets of the input features.

Input subsets RMSE (r)
aSBP (SVR) CO (SVR) E.s (SVR)
brSBP, brDBP, HR, - - 0.15 mmHg/mL
cfPWV, EF (0.92)
brSBP, brDBP, HR, - - 0.17 mmHg/mL
EF (0.91)
brSBP, brDBP, - - 0.17 mmHg/mL
cfPWV, EF (0.91)
brSBP, HR, cfPWYV, - - 0.22 mmHg/mL
EF (0.83)
brDBP, HR, cfPWV, - - 0.17 mmHg/mL
EF (0.91)
brSBP, brDBP, HR, 3.13 mmHg (0.99) 0.34 L/min (0.96) 0.37 mmHg/mL
cfPWV (0.37)
brSBP, brDBP, HR 3.31 mmHg (0.99) 0.38 L/min (0.95) 0.38 mmHg/mL
(0.33)
brSBP, brDBP, 3.09 mmHg (0.99) 0.42 L/min (0.93) 0.38 mmHg/mL
cfPWV (0.35)
brSBP, HR, cfPWV 3.88 mmHg (0.99) 0.59 L/min (0.85) 0.38 mmHg/mL
(0.35)
brDBP, HR, cfPWV 7.68 mmHg (0.94) 0.59 L/min (0.86) 0.38 mmHg/mL
(0.32)
Table 4.10 — ¢-statistics for the OLS regression coefficients.
aSBP Cco Ees
Input t-value P-value t-value P-value t-value P-value
Feature
Intercept -31.296 <0.001 -22.304 <0.001 -60.951 <0.001
brSBP 148.210 <0.001 82.000 <0.001 -12.704 <0.001
brDBP 11.241 <0.001 -51.739 <0.001 32.673 <0.001
cfPWV -9.087 <0.001 -18.746 <0.001 3.685 <0.001
HR 16.776 <0.001 47.129 <0.001 21.960 <0.001
EF 118.028 <0.001
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Table 4.11 - Distributions of the parameters of the in vivo population (n = 783).

Parameter Value (n = 783)
min max mean SD
Age [years] 28.00 | 88.00 | 60.83 | 11.47
Height [cm] 143.00 | 195.00 | 171.60 | 7.94
Weight [kg] 40.00 | 145.00 | 82.29 | 14.10
Heart rate [bpm] 41.00 | 107.00 | 64.06 | 10.65

Brachial systolic blood pressure [mmHg] 90.00 | 180.00 | 126.37 | 15.70
Brachial diastolic blood pressure [mmHg] | 40.00 | 120.00 | 77.89 | 11.21

Central systolic blood pressure [mmHg] 82.00 | 172.00 | 117.95 | 15.18
Carotid-femoral pulse wave velocity [m/s] | 4.70 19.60 8.92 2.25
Hypertension 64 %
Dyslipidemia 64 %

Smoking * 23 %

Renal transplant LD 1%

Renal transplant DD 0.3%

Breast cancer 2%

Coronary artery disease 81 %

* 65 % of the remaining population declared to be smokers in the past.

In vivo evaluation of the aSBP estimations

After the in silico validation, the performance of the aSBP estimator was evaluated anew
using clinical data. The population included both women (n = 136) and men (n = 647). The
descriptive and clinical characteristics of the clinical population are presented in Table 4.11.
First, we assessed the capacity of an SVR model, which was trained using only in silico data,
to make an accurate prediction for the human population. Then, we compared the latter’s
performance with an SVR model which was trained using in vivo data. The regression statistics
between the model predictions and the reference data are summarized in Table 4.12. For the
in vivo data, the hypothesis testing’s results for the OLS regression coefficients are presented
in Table 4.13. Figure 4.11 provides the correlation matrix for the in vivo dataset.

4.4 Discussion

The present study demonstrated that accurate estimations of central hemodynamics (namely
aSBP and CO) and LV E,., from readily available non-invasive clinical measurements can
be obtained by using machine learning models. Our basic hypothesis was whether brSBP,
brDBP (cuff BP), HR, and cfPWV provide sufficient information to predict aSBP, CO, and E;.
However, for the determination of E., data from peripheral pressure fall short to provide a
precise estimate. Our results indicated that additional information, such as the EE which
is directly measured in the heart (rather than the periphery) may improve the non-invasive
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Table 4.12 — Regression statistics between the model predicted aSBP and the reference aSBP.
The input features include brSBP, brDBP, HR, and cfPWV. The testing set consists of in vivo

data only.
VR
S . (t.este:d Intercept 9 nRMSE Bias (LoA)
usinginvivo | Slope r R P-value
[mmHg] [%] [mmHg]

data)
Model trained 167

ing in sili : 2.94 94 | 0. .001 . L
using in silico | 0.99 9 0.94 | 0.88 | <0.00 5.93 (8.62,-11.95)
data
Model trained 0.43

ing in vi 1. 31 . .94 .001 .26+2. ’
gzltr;g in vivo 00 0.3 0.97 | 0.9 <0.00 5.26%£2.3 (8.73,-7.88)

Table 4.13 — ¢-statistics for the OLS regression coefficients.

aSBP
Input Feature | t-value | P-value
Intercept 6.504 <0.001
brSBP 91.182 <0.001
brDBP 12.094 <0.001
cfPWV 3.296 <0.001
HR -18.110 | <0.001

Es predictions. To our best knowledge, this is the first work to evaluate the use of machine
learning models in predicting cardiac contractility.

The best performing prediction model for all three target outputs was SVR which outperformed
the other models accomplishing the highest accuracy. The E,; estimation was effectively
achieved only with the inclusion of EF in the set of input features. In order to evaluate the
robustness of our regression models, sensitivity to the training size was investigated. The
RMSE was gradually increased with decreasing the number or training samples for Random
Forest, SVR, and Gradient boosting. Variations were less distinct for Ridge. Despite the
increase in RMSE with changes in the training size, the errors lied within acceptable limits
[62; 66; 67; 68; 69] for Random Forest, SVR, and Gradient Boosting.

Moreover, we tested the performance of an ensemble predictor which used averaging of
the single models’ predictions. The ensemble prediction model did not outperform the
best performing single prediction model (SVR). However, such an approach may benefit the
estimations’ accuracy by reducing the variance of the predictor and thus may improve the
model’s generalization ability [70]. To avoid overwhelm the reader with an exhaustive report
of several other approaches, we did not explore other ensemble learning techniques. Such an
extensive exploration of different ensemble techniques would be out of the scope of this study.
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Figure 4.4 - Comparison between the estimated and the reference aSBP data. Scatterplot and
Bland-Altman plot between the predicted aSBP (using the SVR model) and the reference aSBP
(using the in silico data). The solid line of the scatterplots represents equality. In Bland-Altman
plot, limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by
the two horizontal dashed lines. Adapted from [37].

Following the in silico validation, in vivo validation was performed only for the aSBP. The aSBP
predictions were found to be precise in the both investigated scenarios, i.e. SVR trained with
in silico data, and SVR trained with in vivo data. The accuracy was slightly higher in the second
scenario despite the smaller size of the training dataset. This is expected if we consider that the
in vivo data may contain more physiologically relevant content and thus be more informative
compared to the in silico data in the training of the model. Interestingly, the hyperparameter
tuning led to the same selection for the hyperparameters C = 100 (selected 100 % of the times)
and gamma = 0.001 (selected 100 % of the times) when the SVR model was validated using the
in vivo population. These findings may verify that the in silico predictive models can be rather
informative for the design of clinical studies.

The principal reason that brSBP, brDBB HR, and cfPWV were selected as the model inputs was
the simplicity of their measurement in a clinical setting. Brachial cuff pressure constitutes
a readily available and cost-efficient measurement in traditional medicine. At the same
time, the use of pressure-based cfPWV is steadily increasing, as a result of numerous studies
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Figure 4.5 - Comparison between the estimated and the reference CO data. Scatterplot and
Bland-Altman plot between the predicted CO (using the SVR model) and the reference CO
(using the in silico data). The solid line of the scatterplots represents equality. In Bland-Altman
plot, limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by
the two horizontal dashed lines. Adapted from [37].

demonstrating its importance as an independent predictor of cardiovascular disease [71; 72;
73]. The convenience and the cost-efficiency of the aforementioned measurements render
them suitable for easy, non-invasive, regular medical check-ups.

Based on the feature importances’ assessment, the aSBP prediction was found to be deter-
mined mainly from the brSBP. The strong dependency between aSBP and brSBP errors is to be
expected, given that the two values are strongly related to mean BP, which is practically the
same in both the aorta and the brachial artery. Moreover, brSBP seemed to be a significant
predictor of CO. Resistance, and thus mean BB is a strong determinant of CO. Given that brSBP
is related to mean BP, this means that brSBP is indirectly related to CO. In addition, cfPWV
is a measure of arterial compliance, which is also determinant of stroke volume and thus
CO. Finally, EF and E,; have been reported to be positively correlated [74] and this further
explains the high importance level of EF for predicting E.;. The results using different subsets
of the input features further verified each feature’s contribution to the predictions of the target
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Figure 4.6 — Comparison between the estimated and the reference E.s data. Scatterplot and
Bland-Altman plot between the predicted E. (using the SVR model) and the reference E;
(using the in silico data) with the ejection fraction as regression input. The solid line of the
scatterplots represents equality. In Bland-Altman plot, limits of agreement (LoA), within which
95 % of errors are expected to lie, are defined by the two horizontal dashed lines. Adapted
from [37].

output variables.

Prior work proposed by Xiao et al. [75] used an artificial neural network (ANN) to predict aSBP
from invasive radial SBP and DBP, and HR. The differences between the predicted aSBP and
the measured aSBP were found to be low and equal to -0.30 + 5.90 mmHg. Despite providing
accurate results, invasive radial BP is not commonly measured on a regular basis, and thus its
modelling imposes a substantial limitation on the clinical application of their proposed model.
When an ANN with the same configuration, as the one reported in the study of Xiao et al.,
was employed to estimate aSBP in our study, the results indicated a similarly good prediction
performance. In particular, the employment of the ANN using only the in silico data (n =4,018)
achieved an RMSE =3.79 + 1.88 mmHg and r = 0.99 (P-value < 0.001). Training/testing the
ANN with only the in vivo data (n = 783) achieved an RMSE = 3.38 + 1.09 and r = 0.97 (P-value <
0.001). In the case of the in vivo data, we observed that the accuracy is slightly improved by
the use of ANN compared to the best performing configuration (SVR achieved an RMSE = 3.53
+ 1.27 mmHg, r = 0.97, P-value < 0.001).
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Figure 4.7 — Sensitivity of RMSE to changes in the training size for the aortic systolic blood
pressure (aSBP) estimator. RMSE root mean square error; RF random forest; SVR support
vector regressor; GB gradient boosting. Adapted from [37].

In general, the majority of previous aSBP estimators relies on features extraction from the
pressure waveforms [75; 76]. In our approach, apart from peripheral SBP and DBP, and HR,
we incorporated the cfPWV measurement. The idea was that cfPWV being an index of aortic
stiffening would improve the performance of the model and strengthen the clinical relevance
of our results. However, feature importances indicated that brSBP may be sufficient for
estimating aSBP. Using only brSBP, brDBP, and HR as inputs would not alter significantly the
accuracy of the estimation of aSBP (using the in silico data); namely, the RMSE would slightly
increase from 3.13 to 3.31 mmHg for the best performing model. In the case that only brSBP
and brDBP were used as input features, the accuracy would deteriorate with a RMSE of 3.46
mmHg which could still be acceptable. The use of only brSBP as an input, however, would
essentially increase the error at 5.33 mmHg. For the clinical dataset, the same errors were
equal to 3.52 mmHg (brSBP, brDBP, HR as inputs) and 4.11 mmHg (brSBP, brDBP as inputs).
Finally, using only the brSBP predictor would lead to an RMSE = 4.20 mmHg.

In addition to prediction models for aSBP, estimation of CO from arterial BP characteristics
has been a fertile area of research. Dabanloo et al. [25] has evaluated the performance of
neural networks in predicting CO from invasive arterial pressure waves. Upon comparison
between the predicted CO and thermodilution-derived CO, their best performing model
provided a mean absolute error equal to 0.54 L/min and a correlation coefficient of 0.89.
Nevertheless, their model made use of the entire pressure waveform, from which input features
were extracted, whereas it provided only an uncalibrated estimation of CO rather than its
absolute value.

The results presented in this study are also compliant with the findings of Bikia et al. [49], who
suggested that brachial BP and cfPWV can be used to predict central SBP and CO (RMSE equal
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Figure 4.8 — Sensitivity of RMSE to changes in the training size for the cardiac output (CO)
estimator. RMSE root mean square error; RF random forest; SVR support vector regressor; GB
gradient boosting. Adapted from [37].

to 2.46 mmHg and 0.36 L/min, respectively). Following an inverse problem-solving approach,
a generalized model of the cardiovascular system was adjusted to quasi- patient-specific
standards using measurements of brSBP, brDBP, HR, and cfPWV. Additional geometrical infor-
mation on the aortic diameter size of each subject was also integrated. The aortic diameter
was approximated using previously published age- and BSA-related data [44]. A similar ap-
proximation of the aortic geometry could be embedded in the present study and improve the
accuracy of the results. Therefore, employment of machine learning on clinical data could
be further reinforced with the inclusion of additional input features such as age, height, and
weight. However, given that the errors are already rather low, it is not anticipated that such an
improvement would be of particular clinical significance.

Additionally, this study aimed to effectively predict E.; while utilizing a small number of
required inputs. Chen et al. [26] proposed a method to estimate E,; from cuff pressure, stroke
volume, and EE Their method provided accurate predictions of E.; with differences equal
to 0.43 + 0.50 mmHg/mL. In contrast to Chen’s approach, we excluded stroke volume from
our input vector and, on the other hand, we introduced cfPWV which constitutes an index of
aortic stiffness and thus a powerful index of arterio-ventricular coupling [77]. In an attempt to
remove EF from the set of inputs, E.; was found to be poorly predicted. This underachieving
performance may be rather expected given that a specific combination of brachial SBP and
DBP and cfPWV might not be unique for only a particular E.; value. Importantly, our study
emphasized on the significance of EF in accurately predicting E;.

The use of EF is further encouraged from the fact that EF constitutes a non-invasive parameter
which can be derived via several cardiac imaging modalities. The Simpson’s method [78]
has been the most commonly used technique; however, it might underestimate EF when
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Figure 4.9 — Sensitivity of RMSE to changes in the training size for the end-systolic elastance
(Ees) estimator. RMSE root mean square error; RF random forest; SVR support vector regressor;
GB gradient boosting. Adapted from [37].

compared to the magnetic resonance imaging (MRI), which has been shown to be the gold
standard non-invasive technique for assessing LV function and thus EF [79]. Of course, the
latter are not considered as convenient and cost-efficient as a cuff- or tonometry-based
pressure measurement. It is likely that the EF-related information may be derived from
another measured parameter which is directly or indirectly related to the cardiac contractility,
e.g. electrical signals of cardiac events [80]. Further investigation towards this direction will be
conducted in future work.

It should be noted that the aim of the current study is not to propose necessarily a tool that
could provide simultaneous predictions of aSBP, CO, and E.;. The models developed in this
study could be considered as independent predictors for each of the target parameters in
different clinical occasions. In particular, aSBP and CO are major hemodynamical indices
that are often useful to the clinician and their non-invasive estimation is highly desirable in
aroutine clinical examination. On the other hand, E.; is less often required. Currently, E.¢
is measured invasively with the acquisition of the LV pressure-volume loops. The invasive
nature of this technique severely limits the use of E. in clinical practice.

The booming of data has led to efforts of transferring one type of information to another using
machine learning models. Specifically, in relation to patho-physiology, the advancement on
measuring and imaging techniques has encouraged the employment of machine learning for
estimating clinical pathophysiological indices and validating their results. This promising
area of research could not exclude applications on cardiovascular health [25; 75; 81; 82]. High
correlation between peripheral pressure and central aortic pressure indicates the potential
to estimate the latter from the former. However, the correlations for a complete set of car-
diovascular variables have not been thoroughly investigated. In this work, we performed a
first study to elucidate which input parameters (non-invasive measurements) are considered
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Figure 4.10 — Correlation matrix for the in silico dataset. Adapted from [37].

necessary when machine learning is employed for predicting aortic hemodynamics and con-
tractility index (invasive measurements). A major advantage of the present study pertains to
the well-balanced dataset that was used for the training/testing scheme. The use of synthetic
data allowed for covering a wide range of hemodynamical characteristics, whereas it provided
us with access to cardiovascular quantities which are difficult to obtain non-invasively in the
real clinical setting, i.e. aortic BP or Eg;.

Cardiovascular models have attracted great interest due to the increasing impact of cardiovas-
cular disease. They have provided a valuable alternative for the assessment of pressure and
flow in the entire arterial network providing additional pathophysiological insights, which are
difficult to acquire in vivo. Numerous previous studies have used in silico data for the estima-
tion of aortic BP, cardiac output, aortic PWV and many more [83; 84; 85; 82; 86]. Importantly,
in silico studies allow for the preliminary evaluation of predictive models across a wide range
of cardiovascular parameters [28] in a quick and cost-efficient way, while their results can be
rather informative of the design of clinical studies [87; 88].

Limitations

Several limitations need to be acknowledged. The data used for the training/testing scheme
were derived from a simulator instead of a real human population. While synthetic data can
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Figure 4.11 — Correlation matrix for the in vivo dataset. Adapted from [37].

mimic numerous properties of the real clinical data, they do not copy the original content
in an identical way. Nevertheless, the goal here was to define the minimum necessary input
information that is required to estimate aortic hemodynamics and E.,. Thus, despite that the
use of synthetic data might not lead to exactly the same results with the results coming from
clinical data, it should not undermine the reliability of the study’s findings. The latter has been
verified by the in vivo validation of our aSBP estimations. Clinical validation was not possible
for the CO and E,; estimators, due to the lack of the respective data. At the initial stage of our
research, we found it reasonable to start with an in silico validation of our predictive models,
instead of collecting measurements of CO and E. in a large cohort. In addition, the cost and
the complexity of the respective measurements would make it difficult to incorporate them in
the current study. Future work should include the use of real-world data for all parameters that
will finally verify the application of the proposed method in the clinical setting. Finally, the
proposed models have been designed and tested on data coming from a generalized model
of the cardiovascular system which was developed according to published data [32]. Hence,
the precision of the predictions might be compromised in the case of pathological conditions,
such as atherosclerosis, aneurysm or aortic valve disease. It is of great importance that in vivo
validation of the models should be conducted using pathological clinical data as well.
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Chapter 4. Non-invasive estimation of aortic hemodynamics and cardiac contractility
using machine learning

Conclusion

In summary, this study showed that the use of non-invasive arm cuff pressure and PWV alone
potentially allows for the estimation of aSBP and CO with acceptable accuracy. This might
not be the case for E¢ prediction. Nevertheless, the estimated E.s can be greatly improved
when EF is used as an additional input in the prediction model. Following validation on
in vivo invasive data, this approach may provide a promising potential in the prediction of
aortic hemodynamics and LV contractility using unintrusive, readily available standard clinical
measurements.
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Abstract

Left ventricular end-systolic elastance (E.;) is a major determinant of cardiac systolic function
and ventricular-arterial interaction. Previous methods for the E.; estimation require the
use of the echocardiographic ejection fraction (EF). However, given that EF expresses the
stroke volume as a fraction of end-diastolic volume (EDV), accurate interpretation of EF is
attainable only with the additional measurement of EDV. Hence, there is still a need for a
simple, reliable, non-invasive method to estimate E,;. This study proposes a novel artificial
intelligence-based approach to estimate E,; using the information embedded in clinically
relevant systolic time intervals, namely the pre-ejection period (PEP) and ejection time (ET).
We developed a training/testing scheme using virtual subjects (n = 4,645) from a previously
validated in silico model. Extreme Gradient Boosting regressor was employed to model E;
using as inputs arm cuff pressure, PEP, and ET. Results showed that E.s can be predicted with
high accuracy achieving a normalized RMSE equal to 9.15 % (r = 0.92) for a wide range of
E¢s values from 1.2 to 4.5 mmHg/mL. The proposed model was found to be less sensitive
to measurement errors (+10 % to 30 % of the actual value) in blood pressure, presenting
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low test errors for the different levels of noise (RMSE did not exceed 0.32 mmHg/mL). In
contrast, high sensitivity was reported for measurement errors in the systolic timing features.
It was demonstrated that E¢ can be reliably estimated from the traditional arm pressure and
echocardiographic PEP and ET. This approach constitutes a step towards the development of

an easy and clinically applicable method for assessing left ventricular systolic function.
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5.1. Introduction

5.1 Introduction

The concept of end-systolic elastance (E,;), first introduced by [1], has become widely ac-
cepted. The Eg;, i.e. the slope of the end-systolic pressure-volume relationship (ESPVR),
constitutes a pivotal determinant of left ventricular (LV) systolic performance and is now
considered an established index of contractility [2; 1; 3]. Assessment of E; is of high impor-
tance in physiological studies and clinical practice. The effective matching between E.; and
vascular load leads to optimal mechanical function. Age-related arterial stiffening [4] and
hypertension [5] are related to the stiffening of the left ventricle, which is accompanied by an
increased value of E.;. It has also been shown that antihypertensive treatment reduces E,.; and
enhances arterial-ventricular coupling [6]. Furthermore, the intercept of the ESPVR has been
linked with prognosis in chronic heart failure [7]. Derivation of E.; requires the measurement
of multiple invasive pressure-volume (P-V) loops under various loading conditions which
limits its use in the routine clinical setting. In an attempt to address this limitation, research
has been directed towards the development of methods for deriving E.; from easily obtained
non-invasive single-beat measurements [8; 9; 10].

In our previous work [11], we demonstrated that E.; could be accurately determined using
brachial systolic (brSBP) and diastolic blood pressure (brDBP), heart rate (HR), and ejection
fraction (EF). The importance of EF on obtaining an accurate E,; estimation has been also
indicated by other published methods [8; 9]. Nevertheless, accurate interpretation of EF
renders essential the additional knowledge of physical determinants of myocardial contraction,
namely the preload and afterload [12; 13]. The question that arises is whether Es could be
derived in a faster and more optimized way while reducing the complexity of the required
measurements. Our primary hypothesis is that EF information could be replaced by other
cardiac functional parameters, e.g. electrical or acoustic signals of cardiac events, that are
related to the LV contractility in a direct or indirect manner.

Previous studies have highlighted the relevance of the timing of cardiac events in assessing
the contractile state of the heart [14; 15; 16]. Pre-ejection period (PEP), i.e. the period between
the onset of ventricular contraction and the aortic valve opening, serves as a major index of
excitation-contraction coupling and may potentially be used to evaluate contractility [17; 18].
Concurrently, LV ejection time (ET), delimited by the opening and closing of the aortic valve,
provides incremental prognostic information on cardiac performance [16; 19].

The objective of this study was to propose a novel method for the estimation of E.; using
brSBP, brDBP, HR (via sphygmomanometry), and contractility-related timing parameters
(via ECG and echocardiography), i.e. PEP and ET. The analysis relied on the use of machine
learning regression analysis. To appraise our concept, we developed and evaluated this
method using synthetic data generated from a previously validated in silico model [20]. An in
silico model constitutes a computer program that allows for simulating human physiology,
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cardiovascular mechanisms, and/or progression of disease. The utility of such models in
medicine has essentially facilitated the visualization and prediction of physiological responses
under different cardiovascular conditions. In the present study, the in silico model provides
additional hemodynamic insights, which would be difficult to acquire in vivo, and is used for
the preliminary assessment and design of the proposed methodology.

5.2 Methods & materials

Data analysis
Study population

The population used in the present in silico study reflected a wide range of hemodynamical
properties and states. Different hemodynamic cases (n = 4,645) were simulated by modifying
key cardiac and systemic parameters of a previously validated in silico model. The /one mathe-
matical cardiovascular model, which was adopted in the current study, has been well described
in [20]. The arterial tree model incorporates all the major arteries of the systemic circulation,
as well as a detailed network representation of the cerebral circulation and the coronary cir-
culation. The governing equations of the model are acquired by integrating the longitudinal
momentum and continuity of the Navier-Stokes equations over the arterial cross-sectional
area. By solving the governing equations with proper boundary conditions, flow and pressure
are obtained in all arterial locations. The arterial segments of the model are considered as
long tapered tubes, and their compliance is calculated by a nonlinear function of pressure and
location as described by Langewouters [21]. Distal vessels are terminated with three-element
Windkessel models [22] and intimal shear is modeled using the Witzig-Womersley theory [23].
At the proximal end, the arterial tree is coupled with a varying elastance model of the left
ventricle [1; 3]. This time-varying elastance model (VEM) describes the relationship between
the LV pressure, Pry, and volume, Vi, namely:

E(t) = Pry(1)

= — (5.1)
Vv (8) = Vg

where V;; indicates the dead volume of the left ventricle. Further details on the 1-D model can
be found in the original publications [20; 24].

Concerning data generation, E.; varied in the range of 1-4.5 mmHg/mL so that the dataset
includes cases with normal as well as dilated and hypertrophied hearts [25; 4; 26]. The filling
pressure lied in the range of 7-23 mmHg according to [25; 4; 26]. The dead volume (V) and
the time of maximal elastance (f.s) were modified according to [27; 20]. The HR values were
within the range of 60 and 100 bpm. Total peripheral resistance and arterial compliance were
altered to simulate a wide variety of arterial tree configurations [21; 28; 29]. In addition to the
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modification of cardiac and systemic parameters, arterial geometry was changed with respect
to arterial length and diameter for each segment to approximate different body types [44; 30].
The variation of the geometry was done in a uniform way for all arterial segments based on
the variation of the aortic diameter. No topological variations (e.g. in the circle of Willis,
number of branches from aortic arch, etc.) were considered. Nonuniform aortic stiffening was
considered for the elderly and hypertensive virtual subjects following the approach described
in Bikia et al. [11].

Given that the literature data are only provided in terms of mean and standard deviation
or/and minimum and maximum values, we chose to perform random Gaussian sampling for
varying the model’s parameters. We filtered the generated data to ensure that they correspond
to physiological human conditions. Particularly, the physiological validity of each subject
was assessed by comparing the simulated brachial and aortic systolic blood pressure (SBP),
DBP MAP and pulse pressure (PP) to the reference values reported in the previous studies
by McEniery et al. [31] (normotensive cases) and [32] (hypertensive cases). A subject was
discarded from the dataset if any of the blood pressure values was not satisfying the minimum
and maximum thresholds indicated as mean + 2.807SD (99.5 % confidence intervals). Such an
approach for generating synthetic data has been applied by a previous similar study [33].
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Figure 5.1 — Representative elastance curve E(¢) with the indicated t.4 (early time point of
isovolumic contraction), t,4; (ending time point of isovolumic contraction), and tes (end-
systolic time point). Adapted from [34].
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Table 5.1 - List of the hyperparameters which were chosen to be optimized and their corre-
sponding values.

Hyperparameter Values

learning rate {0.005, 0.01, 0.05, 0.1, 0.15}
max_depth {3, 5,10}
n_estimators {500, 750, 1,000, 1,250, 1,500, 1750}

Table 5.2 — List of the selected hyperparameters for all the predictive models.

Model Selected hyperparameters
learning rate | max_depth | n_estimators

XGBEges M1 0.05 3 1,750
XGBEges M2 0.01 3 1,500
XGBEges M3 0.1 3 1,250
XGBy 4 M1 0.01 3 500
XGBy 4 M2 0.01 3 500
XGBy 4 M3 0.1 3 1,750

Features extraction

The relevant features were extracted from the flow and pressure waves produced by the in
silico model. Synthetic brSBP, brDBP, brPP as well as HR data were calculated from the pressure
wave at the left brachial artery.

Normally, PEP and ET could be extracted from the synchronous recordings of the aortic blood
flow and the ECG signal. Here, the values of PEP and ET were derived following Shishido et
al. [8], as illustrated in Figure 5.1. The reason that we employed this approach to calculate
PEP and ET was the absence of a model of cardiac electrical activity that would indicate the
starting position of Q-wave. PEP was calculated as the duration of the isovolumic contraction.
The early isovolumic point (ted) was defined as the time point when the time derivative of LV
pressure is above 30 % of dP/dtmax. The end of the isovolumic contraction (t,;) was calculated
from the first inflection point of the elastance curve at the upstroke area. End-systole (t.s) was
measured as the time point when dP/dt reaches 20 % of dP/dt;;,. PEP and ET were obtained
as tyg-teq and tes-t,q, respectively.

Regression analysis

The dataset was organized in pairs of inputs and outputs in order to be used for the train-
ing/testing process. The input features included the “measured” brSBP, brDBP, HR, PEP, and
ET, as well as the t,4, t,4, and t.s. The inclusion of the latter timing points was done to
improve the descriptive cardiovascular profile of each subject and further enhance the regres-
sor’s performance. Furthermore, a predictive model was developed including stroke volume
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(SV) and ejection fraction (EF) as additional input features. Hence, three predictive models
were developed and evaluated based on the different inputs’ sets: i) one using brSBP, brDBP,
HR, PEP ET, toq, tyq, and tes (M1), ii) a second one with only brSBP, brDBP, HR, PEP, and ET
(M2), and finally, iii) a third model including all features from model M1 as well as SV and EF
(M3). We additionally investigated the predictive capacity of our framework to estimate V5.

Nevertheless, the estimation of V; was not considered as the main focus of the present study.

We used Extreme Gradient Boosting (XGB) [35] for the regression analysis. The 70 % of the
dataset (3,251 subjects) was used for the training of the XGB model. The remaining 30 %
(1,394 subjects) was kept for the testing. The regressor f (-) was described as Yges = fres(X; B),
where § represents the unknown model parameters, X, the independent variables, and Yges,
the dependent variable. The unknown parameters of the model were optimized via an inner
cross validation loop, i.e. hyperparameter tuning. Hyperparameter tuning was performed
using GridSearch with ten-fold cross validation. The hyperparameters that were chosen to
be optimized are reported in Table 5.1. The hyperparameters’ values that are not reported
in Table 5.1 were set to their default value. The selected hyperparameters’ values for the six
predictive models are also reported in Table 5.2. Consequently, the prediction accuracy for

each regression model was evaluated on a subject level.

We assessed the importance of each input feature using two concepts, i.e. the feature im-
portance scores returned by the XGB model, and the permutation feature importances. A
major difference between the two concepts is that the feature importances from XGB are
calculated based on the learning process through the training data, while the permutation
feature importances are yielded from the estimations on a test set.

More specifically, the feature importance by XGB provides a score that indicates how useful
and valuable each feature was in the construction of the boosted decision trees within the
model. The hierarchical structure of a decision tree leads us to the final prediction by traversing
through the nodes of the tree. Each node consists of a feature which is further split into more
nodes as the tree develops vertically. The more times a feature is used to make key decisions
with decision trees, the higher its relative importance. Formally, the feature importance score
is calculated for a single decision tree by the amount that each feature split point improves
the performance measure, weighted by the number of observations the node is responsible
for. The feature importance scores are then averaged across all of the trees within the model.
This importance is calculated explicitly for each feature and allows features to be ranked and
compared to each other.

We additionally provide the permutation feature importances which are helpful to interpret
the changes in model’s performance when the information of a feature is discarded. The
concept of permutation feature importances relies on measuring the importance of a fea-
ture by calculating the increase in the model’s prediction error after permuting the feature.
Permutation of a feature is achieved by shuffling the values of the feature on the test set. A
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feature is considered as significant if shuffling its values increases the (trained) model error,
demonstrating that the model relied on the feature for the prediction. A feature is unimportant
if shuffling its values does not change the model error, showing that the model ignored the
feature for the prediction. The concept of permutation feature importance was first intro-
duced by Breiman [36]. Essentially, permutation feature importances express the increase
in model error when the feature’s information is destroyed. For calculating the permutation
importances, we randomly shuffled the values of each feature and we computed the RMSE
after the permutation. This was repeated 20 times and the mean and standard deviation of
the increase in RMSE were reported.

Moreover, the accuracy of a machine learning regressor is largely dependent on the size of
the initial training datasets. Thus, the investigation of how large a training dataset needs to
be in order to build a reliable predictive model is imperative. To obtain this information the
learning curve was computed. Learning curves allow for visualizing the effect of the number
of data instances on the performance. The learning curve was fitted using the observed
accuracy (in terms of RMSE) according to a given training sample size. The training size was
modified from 1 to 98 % of the total number of subjects (50 samples of training size). The
learning curve is presented in Figure 5.2. We observed that as the number of training data
increases, the RMSE of testing decreases and starts saturating while approaching the 4,000
data instances. Given that it is not clear whether a steady state is utterly achieved (a state
where no substantial improvement occurs by increasing the number of training data), we
decided to include all the training dataset for performing the regression analysis. Hence, the
model with the selected hyperparameters was fit to the entire training set (n = 3,251), and the
performance metrics reported in the Results’ section correspond to the testing set (n = 1,394).
The training/testing pipeline was implemented using the Scikit-learn library [37] in a Python
programming environment. The Pandas and NumPy packages were also used [38; 39].

Sensitivity to noise

We assessed the sensitivity of our model to errors in the measurement of PEP and ET. In
addition, sensitivity analysis was performed for errors in the blood pressure measurements
(i.e. amplitude of brachial pressure waveform). The data were artificially corrupted using
three levels of errors, i.e. £10 %, +20 %, and +30 % with respect to their actual value. Errors
in measurements were simulated with a random distribution, i.e. for a noise level equal to
+20 %, the error of each measurement was randomly drawn from the range of [-20, 20] %. The
effect of erroneous inputs was evaluated and the model’s performance was reported for the
six experiments [3 noise levels x 2 sets of inputs (systolic timing intervals and blood pressure
values)]. The experiments were performed using the hyperparameters which were selected
from the M1 model (Table 5.2) which did not account for the noise.
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Figure 5.2 — Learning curve visualizing the effect of the number of data instances on the
model’s performance. Adapted from [34].

Statistical analysis

The statistical analysis was performed in Python (Python Software Foundation, Python Lan-
guage Reference, version 3.6.8, Available at http://www.python.org). All values are presented
as mean * SD. The agreement, bias, and precision between the model predictions and the real
values were evaluated by using the Pearson’s correlation coefficient (), the mean absolute
error (MAE), the normalized root mean square error (nRMSE), and the Bland-Altman analysis
[40]. The computed nRMSE was based on the difference between the minimum and maxi-
mum values of the dependent variable (y) and was computed as RMSE/ (Y4x — Ymin)- Linear
least-squares regression was performed for the estimated and reference data. The slope and
the intercept of the regression line were reported. Two-sided P-value for a hypothesis test
whose null hypothesis is that the slope is zero, using Wald test with ¢-distribution of the test
statistic, was calculated. A P-value below 0.05 was considered as statistically significant.

5.3 Results

Table 5.3 summarizes the cardiac and vascular characteristics of the 4,645 subjects included in
this study.
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Table 5.3 — Summary of the cardiovascular characteristics of the virtual study cohort (n =

4,645).
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. mean+SD
Variable n= 4,645
End-systolic elastance [mmHg/mlL] 3.06+0.74
End-diastolic elastance [mmHg/mlL] 0.13+0.04
Filling pressure [mmHg] 15.32+3.47
Heart rate [bpm] 79.61+8.27
Dead volume [mL] 22.68+14.07
Ejection fraction [%)] 53.74+9.33
tes [mMS] 355.09+26.24
tyq [ms] 65.75+18.46
teq [MS] 13.25+1.02
Pre-ejection time [ms] 52.5+18.19
Ejection time [ms] 289.35+26.85
Stroke volume [mL] 78.7+£21.62
Aortic systolic blood pressure [mmHg] 132.32+24.67
Aortic diastolic blood pressure [mmHg] 100.73+£16.97
Aortic PP [mmHg]| 31.59+13.47
Mean arterial pressure [mmHg] 115.4+19.92
Brachial systolic blood pressure [mmHg] | 141.41+25.89
Brachial diastolic blood pressure [mmHg] | 97.77+16.59
Brachial PP [mmHg]| 43.64+16.61
PP amplification 1.41+0.10
Total peripheral resistance [mmHg.s/mL] 1.13+0.23
Total arterial compliance [mL/mmHg] 1.97+0.69
Aortic diameter [mm] 28.57+1.95

Height [cm]

175.00+25.00

PP amplification = Brachial PP/Aortic PP,
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Table 5.4 — Regression statistics between the model-predicted Es and the reference Eg;.

Intercept nRMSE MAE
Model Slope (mmHg /Il;L] r P-value (%] (mmHg/mL]
XGBges M1 | 0.83 0.53 0.92 | <0.0001 8.54 % 0.22
XGBEes M2 | 0.52 1.45 0.74 | <0.0001 | 15.26 % 0.41
XGBEes M3 | 0.88 0.38 0.95 | <0.0001 7.32% 0.19

Intercept nRMSE MAE
Model Slope (mL] P r P-value (%] (mL]
XGBy g4 M1 0.00 22.55 <0.1 0.79 25.79 11.92
XGBy g4 M2 0.00 22.58 <0.1 0.79 25.79 11.91
XGBy g M3 0.86 3.28 0.93 | <0.0001 9.12 3.62

Comparison between the estimated E,; and the reference E

Table 5.4 displays the statistical comparisons between the non-invasive E; estimates and the
reference E.;. The Bland-Altman plot shows that the estimated E.; had low bias. The limits of
agreement between the estimated and reference E.; (within which 95 % of errors are expected
to lie) were found to be (-0.57, 0.60) mmHg/mL. The scatterplot and the Bland- Altman plots
of the estimated E,; against the real E. are presented in Figures 5.3, 5.4, and 5.5. Finally,
standard error of estimate (SEE) was reported to be 0.15 mmHg/mL. The absolute difference
between the non-invasive E,; estimates and the real E,; values was reported to be lower than
0.5 mmHg/mL in 91 % of the total cases for XGB. At large, the regressor performed adequately

towards the accurate prediction of E;.

The results for the V; estimation are also reported in Table 5.4. For the XGBV; M1 and XGBV,
M2 models, no agreement was achieved between the predictions and the reference data (r <
0.1). Inclusion of the SV and EF led to improved accuracy, achieving a nRMSE equal to 9.12 %
and a correlation of 0.93. Figure 5.6 illustrates the scatterplot and the Bland-Altman plot for
the predicted and real V,; values only for the best-performing model (XGBV,; M3).

Table 5.5 presents the average permutation importances of the input features, sorted in
descending order for predicting E.;. Following the concept of permutation, .4, t.s and PEP
yielded the highest increase in the prediction error on test data (increase in RMSE was equal
or more than 0.46 mmHg/mL). The XGB-based feature importances are also given in Table 5.5.
PEP had a critical contribution (0.440) followed by t,4 and f.; with 0.186 and 0.107,respectively.

Sensitivity to noise

When the systolic time intervals, i.e. PEP and ET, were randomly overestimated or underes-
timated, the performance of the model gradually deteriorated. Corruption of the data with
random noise gave a rise to the error between the predictions and reference values. The

145



Chapter 5. Artificial intelligence-based estimation of end-systolic elastance from arm
pressure and systolic timing intervals

Table 5.5 — Feature importances for the prediction of E;.

Permutation importance
Feature [mmHg/mL] Importance score by XGB
mean+SD
ted 0.460+0.005 0.099
tes 0.400+0.006 0.107
PEP 0.139+0.003 0.440
brDBP 0.032+0.001 0.073
ET 0.025+0.001 0.015
brSBP 0.022+0.001 0.030
HR 0.006+0.001 0.050
taa 0.001+0.000 0.186

performance of the model for the different levels of noise is presented in Table 5.6. Standard
deviation of the RMSE values at the noise levels was +0.11 mmHg/mL. At the level of maximal
noise (30 %), RMSE reached the value of 0.55 mmHg/mL, while the Pearson’s correlation coef-
ficient substantially decreased at 0.68. The estimated E,; values were considerably influenced

by noise corruption.

Errors in brachial blood pressure measurements impacted to a lesser extent the estimation of
E.s. With increasing the magnitude of the introduced noise, we did not notice a pronounced
variation in the RMSE after the noise level of 20 %, namely RMSEs varied by +0.01 mmHg/mL.
When the noise level was +30 %, RMSE found to be equal to 0.32 (r = 0.91) for the XGB model.
Overall, cardiac elastance values were minimally affected.

5.4 Discussion

In the present study, we found that E.; could be estimated non-invasively from arm cuff
pressure and systolic time intervals following a machine learning approach. We developed
and tested our method using synthetic data from a previously validated in silico model of
cardiovascular dynamics. The study population corresponded to an extensive range of cardiac
and arterial systemic conditions. The regression results showed that cuff pressure in conjunc-
tion with systolic time intervals (STIs) achieved a low test error and can capture the LV E¢;
value with sufficient accuracy. The present work is in line with previous efforts towards the
non-invasive estimation of E.; using easily obtained single-beat non-invasive measurements.

In our previous study [41], we demonstrated that the non-invasive estimation of E.; can be
achieved when arm cuff pressure, carotid-femoral pulse wave velocity (cfPWV), and EF are
used as inputs to a regressor. Conventionally, EF is often used to assess LV systolic function and
can be measured using different cardiac imaging techniques, including magnetic resonance
imaging (MRI), the Simpson’s method, speckle tracking strains, etc. However, these imaging
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Figure 5.3 — Comparison between the estimated E.; values and the reference E; for the XGB g,
M1 model. Scatterplot and Bland-Altman plot between the values of E.; derived from the
model and the real E,;. The solid line of the scatterplot represents equality. In Bland-Altman
plot, limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by
the two horizontal dashed lines. Adapted from [34].

modalities are tedious and require a highly trained technician. To facilitate the assessment
of cardiac performance, several studies have focused on the use of STIs which can be conve-
niently obtained via Pulse Doppler echocardiography [14; 15; 42]. Motivated by this concept,
we chose to reformulate the regression pipeline for the estimation of E.; and replace EF with
simple systolic timing parameters. A strong argument reinforcing our methodology arrives
from the fact that interpretation of EF is limited when preload and afterload are not known
[12].

The XGB model achieved high accuracy in the estimated Egs with r = 0.92. In 91 % of the
total cases, the average difference between the non-invasive E,; and the reference E.; was
reported to be lower than 0.50 mmHg/mL. Given that, for a normal heart, E lies within the
ranges of [1.5-3.5] mmHg/mlL, while for dilated hearts and hypertrophied hearts is near 1
mmHg/mL and 4 mmHg/mlL, respectively [4; 9], such an error should allow for reasonably
accurate assessment of systolic function in normal and pathological hearts.

Furthermore, based on the learning curve (Figure 5.2), the training error was reported to be
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Figure 5.4 — Comparison between the estimated and the reference E,; data for the XGBg,s M2
model. Scatterplot and Bland-Altman plot between the values of E.; derived from the model
and the real E,;. The solid line of the scatterplot represents equality. In Bland-Altman plot,
limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by the
two horizontal dashed lines. Adapted from [34].

low, and, hence, the training data are fitted well by the estimated model (low bias). The small
gap between the two curves indicated a low variance. The learning curve well predicted a low
RMSE close to 0.29 mmHg/mL for the training data size equal to or larger than 4,000. Based
on this learning curve, we can deduce that our particular predictive model needs a training
dataset of 4,000 to reach an error of 0.29 mmHg/mL. These findings could be utilized as a

starting reference point for future studies that develop similar estimators.

The individual time points, i.e. t,4 (early time point of isovolumic contraction), ¢4 (ending
time point of isovolumic contraction), and ¢, (end-systolic time point), were incorporated in
the input to enhance the performance of the model. In the spirit of completeness, we further
investigated the change in the accuracy of the predictive model when the latter time points
were not considered as input features. In that case, the XGB model predicted E. achieving an
RMSE equal to 0.50 mmHg/mL and a correlation coefficient of 0.74. The feature importances
were re-ranked as follows: PEP: 0.555, brDBP: 0.154, brSBP: 0.103, HR: 0.101, and ET: 0.087.
Given the deterioration in the accuracy, we chose to keep the aforementioned time points
(given that they are available when PEP and ET are measured) in the input vector in order to
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Figure 5.5 — Comparison between the estimated and the reference E,; data for the XGBg,; M3
model. Scatterplot and Bland-Altman plot between the values of E. derived from the model
and the real E.;. The solid line of the scatterplot represents equality. In Bland-Altman plot,
limits of agreement (LoA), within which 95 % of errors are expected to lie, are defined by the
two horizontal dashed lines. Adapted from [34].

maximize our model’s performance.

In order to further evaluate the robustness of our models, we quantified the effect that mea-
surement errors might have on the E.; estimates. Especially, we performed the regression
analysis while introducing artificial noise to the STIs and the brachial pressure recordings. An
erroneous measurement of the STIs appeared to have a greater impact on the E,; estimation
compared to an error in the brachial blood pressure features. Overall, the sensitivity analysis
on errors in the input features demonstrated that estimated E.s values were considerably
affected by random errors in the systolic timing features (namely, t.4, tz4, tes, PEP, and ET).
In contrast, the overall regression performance was altered only slightly when random noise
corrupted brSBP and brDBP without significantly affecting the accuracy of the estimated E,
values. This can be further explained if we consider the permutation feature importances
for our model; the timing intervals and, in particular, ted and tes held the first places in the
ranking (RMSE would increase at least by 1.4 mmHg/mL after permutating one of those two

features).
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Based on the permutation feature importances, the time points t,; and t,; were the most
significant contributors to the precise estimation of E.. If permutation of a feature leads to a
predictive model with insufficient prediction capacity (high errors), then the information pro-
vided by this feature is significant and the corresponding feature is considered as important.
The threshold for an error to indicate poor prediction is dependent on the problem under
consideration. In the present study, the error threshold for a precise estimation was set to be
lower than 0.50 mmHg/mL, and, therefore, all the features with permutation importances
leading to errors higher than the threshold were considered as largely important. The discrep-
ancies in the features’ ranking between the two approaches for calculating the importance
level can be explained by the fact that the one is based on the training process, while the other
one relies on the predictions on the testing dataset. Moreover, the feature importance method
by XGB favors features that have high cardinality. In our dataset, all PEP values were unique
for all the 4,645 data instances, and this might encourage the algorithm to consider it as the
most important feature. It is recommended that interpretation of the importances is done in a
combinatorial manner, so that a more complete overview is provided using different insights
and aspects. Yet, PEP had a critical contribution using both concepts. The high correlation
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Table 5.6 — Regression statistics between the model-predicted E.; and the reference E.; when
artificial noise is considered.

Hodel Slope [nllrll‘tl:‘;zl:” r | Prvalue n}T‘l;:)[]SE [mml\:lzl;‘mL]
iﬁ?f :fi\;lé) 0.82 0.57 0.92 | <0.0001 | 9.15 0.24
ﬁGﬁ)Ef;j Il\l/i)lise st | 072 0.87 0.84 | <0.0001 | 12.51 0.33
EG;)E; x)lise N 1.26 0.74 | <0.0001 | 15.26 0.40
éG;Efg Il\l/f)lise N 1.40 0.68 | <0.0001 | 16.78 0.4
iGﬁ)E(;z x)lise npp | 083 0.53 0.92 | <0.0001 | 9.15 0.24
ZG;)E; Ilf)lise npp | 081 0.58 0.91 | <0.0001 | 9.46 0.24
)(E_LG;)E; rl\l/ilise npp | 081 0.57 0.91 | <0.0001 | 9.76 0.25

between PEP and LV function has been also demonstrated by previous studies [42]. Finally,
the important contribution of brDBP (4'" higher increase in error) can be explained by the
fact that brDBP is strongly related to the mean arterial blood pressure, which indicates the
pressure against which the heart pumps.

Clinical application of the proposed method

Systolic time intervals can be easily and precisely measured in the clinical practice and may be
used for detecting alterations in LV systolic function [16]. The correlation between these STIs
measurements and conventional LV function parameters has been emphasized in numerous
previous studies [42] paving the way to further explore the potential in using more complicated
nonlinear machine learning approaches.

From a wider perspective, the incorporation of STIs values as features to approximate E,
has been a promising research direction. Several researchers have demonstrated the ability
in acquiring these STIs measurements from more simplified modalities including electro-
cardiography (ECG), phonocardiography (PCG), or seismocardiography (SCG) [43; 44]. Such
methods provided unobtrusive detection of cardiac time intervals and offer the potential to be
integrated into wearable devices. Interestingly, PEP and ET could be very easily obtained using
ECG and a precise electronic stethoscope. More specifically, the initiation of the PEP interval
is placed at the initial point of the Q-wave (point 1, Figure 5.7). In addition, an electronic
stethoscope able to capture the time intervals in the scale of milliseconds would allow us to
determine the moment of the aortic valve closure (point 2, Figure 5). Now, if we set a new time
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Proposed Framework on the Estimation of Ees through Exploitation of
Simpler Measuring Modalities
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Figure 5.7 — Representation of the aortic pressure, the left ventricular pressure, the ECG
including the timing components of pre-ejection period (PEP), ejection time (ET), and the
newly introduced Q-aoClos interval. The Q-aoClos interval is the time period from the initial
trace of Q-wave (point 1) (as measured via ECG) until the closure of the aortic valve (point 2)
(as recorded via a phonographic device). Adapted from [34].

interval which is the sum of PEP and ET (Q-aoClos interval, Figure 5.7), we can measure the
exact duration of the latter using ECG and stethoscope alone. The ECG signal could indicate
the initiation of Q-wave, while phonocardiography would allow us to detect the closure of the
aortic valve. To test this hypothesis, we performed the regression analysis using as inputs only
the arm cuff pressure, the Q-aoClos interval, namely, the summation of PEP and ET, the time
point at the beginning of Q-wave (time 1), and the time point at the closure of the aortic valve
(point 2). Our results indicated that E.; could be effectively estimated achieving an nRMSE
and Pearson’s correlation coefficient equal to 10.37 % and 0.89, respectively, wheareas limits
of agreement were +0.67 mmHg/mL and bias was zero. In that case, the selected hyperpa-
rameters were learning_rate = 0.05, max_depth = 3, n_estimators = 1,250. This finding creates
a rather promising proof-of-evidence towards the non-invasive estimation of E.; reducing
the complexity and the cost of the technique for acquiring the necessary measurements. The
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proposed methodological concept could be easily integrated in a medical device such as a

smart stethoscope.

Prior work on the E. estimation

Several methods have been proposed for the E. estimation using non-invasive single-beat
measurements. First, Chen et al. [9] proposed a simple equation for estimating E.s from
arm cuff pressure, SV, and EE Their proposed method incorporates an estimated normalized
ventricular elastance at arterial end-diastole which was derived from regression on previously
recorded studies. The authors achieved accurate estimations with differences between esti-
mated and real values equal to 0.43 + 0.50 mmHg/mL and a high correlation of 0.91. Here, we
decided, however, to simplify our method by replacing the measurements of the stroke volume
and ejection fraction with the more accurately obtained pre-ejection period and ejection time
intervals. In addition, the calculation of EF as assessed by echocardiography can be rather
sensitive to errors and derived approximately. Removal of EF from our calculation may reduce

the error imposed by such an approximation.

Moreover, Shishido et al. [8] suggested the estimation of Es from pressure values, systolic time
intervals, and stroke volume. Their analysis relies on the approximation of the time-varying
elastance curve by two linear functions corresponding to the isovolumic contraction phase
and the ejection phase. The slope ratio of these functions is calculated and used for estimating
E¢s by the employment of a simple equation. Their model provided reliable predictions of E;
in anesthetized dogs with r = 0.93 and SEE = 2.10 mmHg/mL. In accordance with our findings,
this methodology evidences the utility of systolic time intervals on the estimation of E,;. A
limitation of their study pertains to the fact that the authors developed their model using the
same population which was used for the model’s testing rather than an independent group.

Recently, Pagoulatou et al. [10] proposed and validated a novel method for non-invasively
estimating E.; based on sphygmomanometric pressure measurements and standard echocar-
diographic examination, comprising the measurement of aortic flow and ejection fraction.
Their method is based on the adjustment of the aforementioned model of the cardiovascular
system to patient-specific standards and subsequently allows for the derivation of E. and Vj;
via an inverse model-fitting approach. Invasive validation of their technique on 19 patients
yielded accurate estimates of Es [r= 0.89, nRMSE =9 %, bias = -0.13 mmHg/mL with limits
of agreement (-0.9, 0.6) mmHg/mL], while it was demonstrated that the method is robust to

measurement noise.

Limitations

This study has potential limitations that need to be acknowledged. The major limitation of
the present study is the use of synthetic data and not real in vivo recordings. Nevertheless,
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synthetic data can sufficiently simulate the content of the real clinical measurements, while
they allow for controlling the distribution of rare but relevant conditions or events. In addition,
the in silico model that was used for the data generation has been thoroughly validated
against in vivo data and provides realistic representations of the physiological signals. Another
limitation pertains to the fact that PEP and ET used for the training/testing scheme were
extracted from the elastance curve, albeit this framework has been designed to use only
echocardiographic measures. This approach was selected due to the lack of ECG information,
given that cardiac electrical events are not yet included in our in silico model. Sensitivity
analysis was performed in order to examine the model’s performance with respect to over-
and underestimation of these two features. Furthermore, our proposed method does not
provide the entire ESPVR, given that the inputs do not provide adequate information to predict
V4. However, we observed that when the SV and EF were included in the input vector, our
method is able to estimate V; with an nRMSE =9.12 % and r = 0.93. Finally, the current dataset
was created using the mathematical model of a healthy individual free of pathology. Hence,
implementation of the method is limited in cases of aortic valve stenosis, regurgitation, or
other valve pathologies, where the relationship between the peripheral pressure and the STIs is
modified. Further investigation towards this direction will be performed in our future studies.

Conclusion

At large, this study provided evidence that accurate estimates of E.; could be yielded from
pressure data and contractility-related timing parameters using a data-driven approach. Based
on our findings, we conclude that data-driven approaches might be valuable for estimating
Ees. The STIs appeared to be a promising source of information for assessing E.; and their
usefulness should be emphasized. At large, our results were found to be in good agreement
with the actual E.; values over an extensive range of LV contractility values and loading
conditions. The proposed methodological concept could be easily transferred to the bedside
and potentially facilitate the clinical use of E.s for monitoring the contractile state of the heart
in the real-life setting.
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Abstract

Determination of left ventricular (LV) end-systolic elastance (E,;) is of utmost importance for
assessing the cardiac systolic function and hemodynamical state in humans. Yet, the clinical
use of E, is not established due to the invasive nature and high costs of the existing measuring
techniques. The objective of this study is to introduce a method to assess cardiac contractility,
using as a sole measurement an arterial blood pressure (BP) waveform. Particularly, we aim to
provide evidence on the potential in using the morphology of the brachial BP waveform and its
time derivative for predicting LV E, via convolution neural networks (CNNs). The requirement
of a broad training dataset is addressed by the use of an in silico dataset (n = 3,748) which
is generated by a validated one-dimensional mathematical model of the cardiovasculature.
We evaluated two CNN configurations: (i) a one-channel CNN (CNN;) with only the raw
brachial BP signal as an input, and (ii) a two-channel CNN (CNN3) using as inputs both the
brachial BP wave and its time derivative. Accurate predictions were yielded using both CNN
configurations. For CNN,, Pearson’s correlation coefficient () and RMSE were equal to 0.86
and 0.27 mmHg/ml, respectively. The performance was found to be greatly improved for
CNNj (r=0.97 and RMSE = 0.13 mmHg/mlL). Moreover, all absolute errors from CNN, were
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found to be less than 0.5 mmHg/mL. Importantly, the brachial BP wave appeared to be a
promising source of information for estimating E.;. Predictions were found to be in good
agreement with the reference E.; values over an extensive range of LV contractility values and
loading conditions. Therefore, the proposed methodology could be easily transferred to the
bedside and potentially facilitate the clinical use of E¢ for monitoring the contractile state of

the heart in the real-life setting.
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6.1. Introduction

6.1 Introduction

Left ventricular (LV) contractility is a major determinant of the cardiac systolic function,
ventricular-arterial interaction [1; 2] as well as hemodynamical state [3]. Currently, the
gold standard method for evaluating LV systolic function is the invasive measurement of
LV pressure-volume loops under varying load conditions, whereby the end-systolic pressure-
volume relation (ESPVR) is derived [1; 4; 2]. The ESPVR, described by its slope, i.e. the
end-systolic elastance (E,s), and its intercept, i.e. the dead volume (V;), has been proved to be
less load sensitive than other indices of ventricular contractility [5]. For an increased value of
Ees, the left ventricle is able to eject a higher blood volume against the same afterload, which
is indicative of increased contractility [4]. Evaluation of E. is of utmost significance in clinical
practice. The age-induced vascular stiffening [6] and hypertension [7] are strongly associated
to the stiffening of the left ventricle, which is followed by an increase in E.;. Furthermore,
continuous and reliable monitoring of E,; is critical in patients with heart failure or septic
cardiomyopathy [3]. Yet, the bedside use of E.; is not established due to the invasive nature
and high costs of the existing measuring techniques [8]. Such limitations create an inescapable
need for a new method that will permit the E. derivation in a fast, easy, non-invasive manner
using easily obtained measurements (such as applanation tonometry).

Arterial pulse waves contain a wealth of information for assessing the cardiovascular health
in humans. Importantly, the morphology of the arterial pulse is affected by the mechanical
and structural properties of the heart and the arterial network [9]. Clinical studies have
investigated the arterial hemodynamics in normal and diseased human hearts under varying
loading conditions and inotropic states, showing that the shape of the arterial BP waveform
is highly sensitive to changes in LV E¢ [10]. Interestingly, Ostadal et al. have presented data
verifying that continuous monitoring of dP/dt;,,, (Where BP time-signal is measured via
arterial line) enables the assessment of the LV function in patients with acute heart failure
[11]. In particular, the dP/dt;,,, can be calculated from a BP waveform, obtained either
minimally invasively from a peripheral arterial line [12; 13; 14] or non-invasively using, for
instance, a tonometry-based device [15]. Nonetheless, there is no current study to investigate
the importance of exploiting the entire BP waveform (time sequence and its time derivative)
for further facilitating the non-invasive monitoring of LV contractility.

Recent advancements in the field of artificial intelligence have introduced novel methods
towards the predictive modelling for clinical use, creating a promising opportunity for further
methodological advancements [16]. Yet, only few studies have leveraged machine learning
and deep learning techniques for cardiac monitoring [17; 18; 19]. Motivated by the evidence
provided by the current state of knowledge, the present study aims to explore the opportunity
in using the entire brachial BP wave for predicting LV E,; via convolution neural networks
(CNNs). The requirement of a broad training dataset is addressed by the use of an in silico
cohort, which was generated by a validated one-dimensional (1-D) cardiovascular simulator
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[20]. In silico models permit studying and understanding of various pathophysiological
conditions, whereas they provide additional hemodynamic insights, which would be difficult
to obtain in vivo. Concurrently, accurate measurement of E,; is challenging in a human cohort
and thus a preliminary in silico verification of the proposed concept would benefit the future
in vivo validation. Our aim was to propose an original conceptual methodology for continuous
monitoring of the cardiac performance and to evaluate its feasibility in silico. The result of the
in silico experiments can be considered as preliminary implications for the accuracy of the
predictions under ideal conditions.

6.2 Methods & materials

Brief description of the cardiovascular simulator

We adopted a 1-D mathematical model of the cardiovasculature (Figure 6.1) which has been
previously described in [20]. The arterial tree network includes all major vessels of the systemic
circulation, as well as the cerebral circulation and the coronary circulation. The governing
equations of the model are derived by integrating the longitudinal momentum and continuity
of the Navier-Stokes equations over the arterial cross-section. The model solves the governing
equations with proper boundary conditions and provides flow and pressure at every arterial
location of the network. Every arterial segment is modelled as a long, tapered tube, and
its compliance is defined as a non-linear function of pressure and location [21]. Terminal
vessels are coupled with three-element Windkessel models [22] and intimal shear is modeled
following the Witzig-Womersley theory [23]. At the proximal end (at the root of the aorta), the
arterial tree is coupled with a time-varying elastance model (VEM) of the left ventricle [1; 4].
Specifically, VEM simulates the relationship between the LV pressure (P;y) and LV volume
(Vry), namely:

P
En)=—2_ 6.1)
Viv = Va
where V, is the LV dead volume. Table 6.1 summarizes all the inputs and outputs of the 1-D
cardiovascular model. A detailed description of the 1-D simulator can be found in the original

publications [20; 24]).

Description of the in silico dataset

For generating various hemodynamic cases, the 1-D cardiovascular simulator ran using differ-
ent combinations of arbitrary input model parameters. The distributions of the input model
parameters were based on literature data, by identifying the normal values and ranges of the
parameters. Given that the literature data are only provided in terms of mean and standard de-
viation or/and minimum and maximum values, the exact distribution of each parameter was
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Table 6.1 — List of the inputs and outputs of the 1-D cardiovascular model.

Variabl
arla. € Value
notation
Inputs
End-systolic elastance [mmHg/mL] Ees 2.6
End-diastolic elastance [mmHg/mL] Eed 0.08
Filling pressure [mmHg] Pfill 14
Time of maximal elastance [ms] tes 340
Heart rate [bpm] HR 75
Dead volume [mL] vd 15
Venous resistance [mmHg.s/mlL] Rven 0.003
Arterial distensibility [1073/ mmHg] C (no_segments)x1 vector
terminal ts)x1
Terminal compliances [mL/mmHg] Ct (no_terminal_segments)x
vector
t inal ts)x1
Peripheral resistances [mmHg.s/ml] Rt (no_terminal_segments)x
vector
Arterial inlet diameter [cm] din (no_segments)x1 vector
Arterial outlet diameter [cm] dout (no_segments)x1 vector
Arterial length [cm] len (no_segments)x1 vector
Blood density [kg/ m3] o 1050
Blood viscosity [Pa.s] U 0.004
Outputs
(no_segments)x(no_time_points)
Pressure waves [mmHg] pressures
vector
(no_segments)x(no_time_points)
Flow waves [mL/s] flows
vector
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A

Figure 6.1 — Schematic representation of the model of systemic circulation developed by [20].
(A) Main systemic arterial tree. (B) Detail of the aortic arch and the coronary network. (C)
Detail of the principal abdominal aorta branches. (D) Blown-up schematic of the detailed
cerebral arterial tree, which is connected via the carotids (segments 5 and 15) and the vertebrals
(segments 6 and 20) to the main arterial tree shown in (A). Adapted from [20].

unknown. In addition, varying the parameters while accounting for dependencies between
parameters was not feasible due to the lack of sufficient data to inform inter-dependencies.
Therefore, the sampling was selected to be random Gaussian.

The selected distributions of the input model parameters are summarized in Table 6.2. The
parameters of arterial distensibility and terminal compliance were altered simultaneously,
while nonuniform aortic stiffening was considered for the elderly and hypertensive virtual
subjects, following the methodology described in our previous work [25; 26]. Peripheral
resistances were modified uniformly in order to achieve the specific value of total peripheral
resistance in the selected range.

Furthermore, the geometry of the arterial network (namely length, inlet diameter, and outlet
diameter of the arterial segments) was modified to simulate different body types by adapting
the length and the diameter of all arterial vessels. The reference state of the arterial tree
model corresponds to an individual with a height equal to 180 cm. Different heights were
simulated via multiplication of the reference arterial lengths with a scaling factor (uniform
adaptation). As per the arterial diameters, previous studies have associated the variation of the
aortic diameter with respect to age, gender, weight, and height [27]. However, there exist no
sufficient available data to demonstrate the diameter variation of multiple arterial segments
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Table 6.2 — Selected distributions of the model’s input parameters based on the literature

Parameter meantSD | Reference
End-systolic elastance [mmHg/mL] 2.3+1 [6]
End-diastolic elastance [mmHg/mlL] 0.2+0.11 [6]
Filling pressure [mmHg] 15+5.4 [29]
Time of maximal elastance [ms] 327+39 [30]
Heart rate [bpm] 63.719.5 [31]
Aortic distensibility [10~/mmHg] 5.86+3.23 [32]
Total peripheral resistance [mmHg.s/mL] | 1.28+0.31 [31]
Aortic diameter [cm] 33.2+4.1 [27]
Height [cm] 169.2+8.9 [31]

with respect to an individual’s demographic profile. As a result, we modified all arterial
segments following a uniform distribution based on the variation of the aortic diameter.

In order to eliminate the likelihood of creating unrealistic hemodynamical profiles, we exam-
ined the physiological validity of every case and discarded any implausible generated virtual
subject. The physiological validity of each subject was evaluated by comparing the simulated
brachial and aortic BP values [i.e. SBP, DBP, MAP, and pulse pressure (PP)] to the reference
values reported in the literature [28]. A subject was discarded from the data if any of the BP
values did not lie within the range of mean + 2.807SD (assuming 99.5 % confidence intervals).
For deriving the dataset, we ran the model 10,000 times to generate 10,000 cases. Out of the

10,000 cases, 3,748 samples were accepted after applying the above filtering criteria.

Data pre-processing

The brachial BP waveform was derived from the left simulated brachial artery. The train/-
validation/test split was set to be 60 % (2290 cases)/20 % (764 cases)/20 % (764 cases). By
computing the MSE with decreasing training size, we noticed that similar results can also be
achieved with fewer samples (e.g. 1603) and, therefore, we may deduce that a training size of
2290 is sufficient.

The BP waveforms were up-sampled so that each wave consists of 200 samples. This selection
allowed us to ensure a sampling frequency higher than the 100-Hz threshold suggested for the
pulse wave velocity techniques [33] (which require substantially high signal resolution). This
value was considered as a fair trade-off between computational time and high signal fidelity.

Subsequently, the data were normalized using the MinMaxScaler() function from Sklearn
library. The Min-max normalization method is a standard normalization approach which
guarantees that all features will be on the same scale, e.g. between zero and one. Other meth-
ods, such as the z-score or feature clipping, are preferable when there are several outliers in
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the data. Nonetheless, given that the filtering of the in silico population essentially disregards
the outliers, the Min-max method may be sufficient for our learning algorithm.

Convolution neural networks

We evaluated two model configurations with respect to the inputs:

1. One-channel CNN (CNN;): Using as a sole input the entire BP waveform.

2. Two-channels CNN (CNN3): Using as inputs the entire BP waveform and its time deriva-
tive.

The time derivative of the BP wave was calculated as the slope of the wave using the central
differences approach:

, - fln=1-fln+1]
flnl= 77 (6.2)

where f[n] is the BP function at the n'" time point and 7 is the time interval between the two
pressure values. The 7 is computed as the entire heart cycle duration divided by the number
of recorded pressure values (200 samples).

The CNN models were created using PyTorch library [34]. In particular, the networks were
composed of four 1-D Convolutional layers, each of them followed by an activation ReLU
layer. Following the four convolutional layers intercalated with the activation ReLU layers,
three additional functions were used to yield the final output results. Firstly, we employed a
MaxPooling layer which uses the MaxPool1ld function from PyTorch framework. The MaxPool-
ing function permits to progressively reduce the spatial size of the data for keeping only the
maximum of each window while striding (kernel_size = 3, stride = 2). The MaxPooling layer was
followed by a Flatten function which flattened the output of the convolutional layers to create
a single long feature vector. A Linear layer was finally applied on the output of the Flatten
function, providing the final prediction of the E,; value. The functions are further described in
the torch.nn module (Available at: https://pytorch.org/docs/stable/generated/torch.nn).

In order to generate our different CNN models, we made use of PyTorch ConvlD() function
with different values for in_channels and out_channels parameters. The input data size was
200 for CNN; and 200x2 for CNN». In addition, the kernel size of each filter was set to 5, which
is a popular choice in the state of the art. Importantly, we opted for an odd-sized filter, as all
the previous layer pixels would be symmetrically around the output pixel. Selecting even-sized
kernel filters would require us to account for distortions across the layers. Therefore, odd-sized
kernel filters were preferred for implementation simplicity. The value of stride and padding
was kept constant throughout the models and equal to 2.
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Table 6.3 — Number of filters per each convolutional layer for the two CNN models.

Number of filters per channel Total numb.er of filters
(no_filters x no_input_channels)

CNN;

Layer 1 2 2

Layer 2 4 8

Layer 3 8 32

Layer 4 16 128
CNN,

Layer 1 8 16

Layer 2 16 128

Layer 3 18 288

Layer 4 24 432

Each of the CNN model with each own input layer was characterized by the respective number
of channels. Figure 6.2 illustrates the number of inputs/outputs between each convolutional
layer, and the architecture of the two models. The number of filters per channel on each
convolutional layer is presented in Table 6.3. The number of filters was optimized by an “error
and trial” approach, and the optimal values were selected for the specific type of data.

Convolutional layer 3 MaxPool1D
In_channels: 4 | Out_channels: 8 3, stride=2
1
RelLU

Convolutional layer 2 Linlear
In_channels: 2 | Out_channels: 4 w
In_channels: 8 | Out_channels: 16

Figure 6.2 — Representation of the architecture of the CNN model configurations. The two
CNN models are shown in different colors (CNN; in blue and CNN in green) and the number
of the in_channels and out_channels for each convolutional layer is reported. Adapted from
[35].

Convolutional layer 1
In_channels: 1 | Out_channels: 2

-

The CNN parameters, namely the weights and biases, were optimized upon training on 60 %
of the dataset. The resulting model was then applied to the validation set (20 % of the entire
dataset) in order to assess the loss and the accuracy in the output. On this validation set, we
performed tuning for two hyperparameters, namely the batch_size and the number of epochs.
This allowed us to ensure that no overfitting occurred. The value of learning_rate was set equal
to 0.001 and tuning was performed using the Adam optimizer [36] for batch_size values {32, 64,
128} and epochs values within the range of [1, 400]. Adam is a versatile optimization method.
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Given the satisfactory performance of our trained models, we did not consider evaluating
additional algorithms.

The trained CNN models using the tuned hyperparameters along with the weights and biases
values were applied to the test set (remaining 20 % of the data) in order to evaluate the
predictive performance of the models. The tuning process was conducted with regard to the
mean square error (MSE) loss function. The MSE loss function is considered as a fair selection
under the inference framework of maximum likelihood when the distribution of the target
variable is Gaussian-like (as in the present study). In addition, it is preferable in comparison
to other methods which might be more computationally expensive (e.g. the mean absolute
error method which uses modulus operator function) or might impose increased training
requirements (e.g. the uber loss which involves the optimization of the hyperparameter ¢ in
order to maximize model accuracy).

Sensitivity to errors

In order to investigate the impact of potential errors or adverse effects in the measurements of
the BP signal, the test data were corrupted with artificial noise. White gaussian noise (WGN)
was added to the BP for each subject using the awgn() from MATLAB (The Math Works, Inc.
MATLAB. Version 2020b). The performance of the two CNN models was tested for five values
of signal-to-noise ratio (SNR), i.e. 70, 60, 50, 40, and 30 dB. The metrics of agreement and
accuracy were reported for each level of noise. Examples of the noise effect on the BP wave are
depicted in Figure 6.3.

Statistical analysis

The performance of the models in terms of agreement, bias and accuracy was evaluated
with the use of the Pearson’s correlation coefficient (r ), the normalized root mean square
error (nRMSE), and the Bland-Altman analysis [37]. The computed nRMSE was based on
the difference between the minimum and maximum values of the dependent variable. A
P-value below 0.05 was considered as statistically significant. The statistical analysis was
performed in Python (Python Software Foundation, Python Language Reference, version 3.6.8,
Available at http://www.python.org).

6.3 Results

Table 6.4 presents the cardiac and vascular characteristics of the study population (3,748
cases). The CNN-derived E.s were compared to the reference E.; values, which were provided

by the 1-D cardiovascular model.
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Figure 6.3 — Brachial blood pressure waves after adding artificial noise. The noisy data are
presented in red solid lines and the original noise-free data in black dashed lines. Adapted

Comparison between the CNN-predicted E.; and the reference E,; values

Table 6.5 summarizes the regression metrics of the statistical comparisons between the non-
invasive E.; estimates and the reference E,;. The Bland-Altman analysis indicated a low bias
for the estimated E,;. The limits of agreement (LoA) between the estimated and reference
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Table 6.4 — Summary of the virtual study cohort (n = 3,748) cardiovascular characteristics.

Parameter Value
(n=3,748)
End-systolic elastance [mmHg/mL] 2.4+0.52
End-diastolic elastance [mmHg/mL] 0.16+0.04
Filling pressure [mmHg] 16.54+3.19
Time of maximal elastance [ms] 328+23
Heart rate [bpm] 75.96+8.25
Ejection fraction [%] 47.38+6.06
Stroke volume [mL] 56.68+12.75
Aortic systolic blood pressure [mmHg] 110.62+23.13
Aortic diastolic blood pressure [mmHg] 80.93+14.79
Aortic pulse pressure [mmHg] 29.70+13.04
Mean arterial pressure [mmHg] 95.71+£18.40
Brachial systolic blood pressure [mmHg] | 121.64+24.07
Brachial diastolic blood pressure [mmHg] | 78.71+14.44
Brachial pulse pressure [mmHg] 42.93+15.05
Pulse pressure amplification 1.49+0.11
Total peripheral resistance [mmHg.s/mL] 1.36+0.17
Total arterial compliance [mL/mmHg] 1.27+0.41

E¢s (within which 95 % of errors are expected to lie) were found to be (-0.55, 0.49) mmHg/mL
and (-0.26, 0.23) mmHg/mL, for CNN; and CNN,, respectively. Figures 6.4 and 6.5 illustrate
the scatterplots and the Bland-Altman plots of the estimated E. against the actual E, for the
two CNNs. The absolute difference between the estimated E.; and the real E.¢ values did not
exceed 0.5 mmHg/mL in 95 % of the total cases for CNN, while all errors were found to be
smaller than 0.5 mmHg/mL for CNN». Furthermore, for the CNN» configuration, the absolute
error was less than 0.05 mmHg/mL in 61 % of the test set.

The computational time required for training the models was 110 s and 115 s for CNN; and
CNN3y, respectively. The time required to yield the predictions for the test set was reported to
be less than 1 s.

Sensitivity to errors

The impact of potential errors or adverse effects in the measurements of the BP signal was
quantified for the two CNN configurations under various noise levels (Table 6.5). The CNN;
model appeared to be robust for an SNR value equal or larger than 40 dB (nRMSE < 15 %).
On the other hand, the performance of CNN, remained unaffected for SNR = 60 dB (nRMSE
was doubled for higher values of SNR). However, when the SNR reduced to 40 dB or less, the
correlation and agreement were significantly deteriorated (r < 0.6 and nRMSE > 30 %).
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Figure 6.4 — Comparison between the predicted E,; and the reference E.s data for CNN;. Scat-
terplots and Bland-Altman plots between the CNN-predicted E.; and the reference E,;. The
solid line of the scatterplots represents equality. In Bland—-Altman plots, limits of agreement
(LoA), within which 95 % of errors are expected to lie, are defined by the two horizontal dashed
lines. Adapted from [35].

6.4 Discussion

In the present study, we suggested that the prediction of the cardiac contractility index of E;
is feasible using a single brachial BP waveform. The proposed concept was appraised using an
in silico dataset which was generated using a 1-D mathematical model of the cardiovascular
system [20]. The results showed that the brachial BP wave may be valuable for the characteri-
zation of E¢,. In particular, the CNN configuration combining the brachial BP wave and its
time derivative provided higher precision than the precision achieved by the CNN that used
only the BP signal (correlation was increased from 0.86 to 0.97).

Arterial pulse wave contains a wealth of physiological information as its morphology is influ-
enced by the heart and the systemic circulation [9]. Quantities such as stroke volume as well
as the arterial stiffness and wave reflections have a prominent impact on the arterial pulse.
Furthermore, pathological changes affect the arterial pulse in different ways, including the
amplitude, shape, and frequency [38]. As a result, arterial pulse waves provide abundant and
reliable information about the cardiovascular function. Importantly, physiological parameters
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Figure 6.5 — Comparison between the predicted E.; and the reference E,; data for CNN>. Scat-
terplots and Bland-Altman plots between the CNN-predicted E,; and the reference E.;. The
solid line of the scatterplots represents equality. In Bland-Altman plots, limits of agreement
(LoA), within which 95 % of errors are expected to lie, are defined by the two horizontal dashed
lines. Adapted from [35].

derived from the arterial pulse can be useful for diagnosis and clinical decision making. Arte-
rial waves can be easily measured using non-invasive clinical devices, such as oscillometric or
tonometric BP monitors. In addition, arterial waves from photoplethysmography (PPG) or
other signals including the electrocardiogram (ECG), are also routinely monitored by wearable
devices (e.g. smartwatches and fitness wristbands). Hence, the high accessibility of the arterial
pulse waves in both clinical settings and daily life encourages further exploitation of their
insights with respect to the cardiovascular function.

With the increasing availability of clinical data, signals, and images sourced from various
avenues of medicine and healthcare, the application of artificial intelligence for analysis and
interpretation of medical data grows rapidly. The diagnosis of the cardiovascular disease
could benefit essentially from early prediction, prevention, and proactive management. Thus
artificial intelligence-based methodologies could essentially contribute towards this direction.
Deep learning offers a promising potential in exploring new methods for cardiac monitoring
by deciphering key information from arterial waveforms. Deep learning is a class of machine
learning algorithms that uses multiple layers to progressively extract higher-level features
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from the raw input. In this study, we leveraged this exact capacity of CNN models in order
to evaluate LV E. from a single BP signal. Such potential can open new directives in digital

health and potentially suggest new markers for cardiac monitoring purposes.

Ensuring high fidelity in the signal acquisition constitutes a critical aspect for the accurate
estimation of E,;. Especially, caution should be paid in successfully capturing the waveform,
as the measurement may be prone to errors or adverse effects which can distort the relevant
information for the deep CNN prediction. In order to evaluate the effect of errors in the
morphology of the input brachial BP wave, we artificially introduced simulated noise. The
noise was applied only on the test set which was subsequently fed to the trained CNN models.
The sensitivity analysis showed that subtle distortion in the wave shape did not significantly
affect the accuracy of the CNN models. However, the performance was severely worsened
when the SNR approached 30 dB. The CNN; was found to be more robust to measurement
noise when compared to the CNN;, whose estimation relies on both the pressure wave and its
time derivative. This might be explained by the sensitivity of the CNN, to two input waves.
Specifically, the error may propagate through the derivative computation by directly altering
the two derivative factors (i.e. f[n-1] and f[n+1]) and, subsequently, influence to a greater

extent the deep CNN prediction.

Previous methods on the estimation of E.; rely mainly on non-invasive single-beat measure-
ments [39; 40; 41; 18]. These methods require the inclusion of cuff BP, stroke volume, ejection
fraction or other measurements. Especially, stroke volume and ejection fraction constitute
common measures of the LV systolic function and can be obtained via several cardiac imaging
modalities, such as the magnetic resonance imaging, and the Simpson’s method. However,
these imaging techniques are tedious and require a highly trained technician. In addition,
ejection fraction expresses the stroke volume as a fraction of end-diastolic volume (EDV), and,
therefore, correct interpretation of ejection fraction can be achieved only with the additional
knowledge of EDV. Simplification of the E.; approximation by using a sole BP wave recording
may facilitate cardiac monitoring while reducing costs and complexity for the clinicians and
the patients.

It is to be highlighted that this study aimed to address an unmet clinical need by proposing
a novel methodology, dissimilar to the existing state of the art. As a result, there was not
sufficient relevant literature to guide the CNN design and architecture for the research question
under investigation. In particular, there did not exist previously published studies that aimed
to address a similar problem and which could inform us about the selection of the model
functions and parameters. Therefore, we developed and suggested an original architecture
that fitted best in the specific type of data.
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Limitations

Several limitations of the present study need to be acknowledged. The current study was
entirely based on simulated data and thus the results should be considered as a preliminary
assessment of the theoretical concept of the proposed approach. While synthetic data can
mimic numerous properties of the real clinical data, they do not copy the original content
in an identical way. Future work should include the use of real clinical data that will finally
verify the application of the proposed method in the clinical setting. It is likely that the models
trained using the simulations are not capable for adequate predictions for real human data.
Nevertheless, in silico trained networks could be used in transfer learning as pre-trained
networks, which are subsequently fine tuned with clinical measurements. At this stage of our
research, we found it reasonable to start with an in silico validation of our research hypothesis,
instead of directly collecting measurements of E.; in humans. The cost and the complexity
of the E,; measurements would make it difficult to incorporate them in the current study. In
addition, the variance of the simulated EF data was reported to be low, while the average EF
was equal to 47 %. Such a data distribution represents more accurately a population with
heart problems. Our future in vivo studies will include a wider range of EF values, which will
account for both diseased and healthy populations. Finally, the evaluation of the proposed
framework was done using a single beat of each virtual subject. Next steps will also include
the in silico and the in vivo validation of a CNN method that uses multiple heart beats from
every participant. Hence, a closed-loop cardiovascular mathematical model may be adopted
for achieving this goal.

Conclusion

We showed that the use of the brachial BP waveform in conjunction with a deep CNN provided
accurate estimates of E,;. In particular, our findings indicated that the brachial BP wave may
be a promising source of information for assessing E.s, and its clinical utility should be empha-
sized. Our prediction algorithm achieved a satisfactory performance for an extensive range of
LV contractility values and loading conditions. Consequently, the proposed methodological
concept could be readily transferred to the bedside and potentially enhance the clinical use of
E¢s for monitoring the contractile state of the heart in the real-life medical environment.
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Abstract

In vivo assessment of aortic characteristic impedance (Z,,) and total arterial compliance (Cr)
has been hampered by the need for invasive methods to access simultaneous recordings of
aortic pressure and flow, wall thickness, and cross-sectional area. In contrast, regional pulse
wave velocity (PWV) measurements are non-invasive and clinically available. In this study, we
present a non-invasive method for estimating Z,, and Cr using cuff pressure, carotid-femoral
PWYV, and carotid-radial PWV. Regression analysis is employed for both Z,, and Cr. The
regression models are trained and tested using a pool of virtual subjects (n = 3,818) generated
from a previously validated in silico model. Predictions achieved an accuracy of 3.25 %, r =
0.98, and 3 %, r=0.99, for Z,,, and Cr, respectively. The proposed approach constitutes a step
forward to the non-invasive screening of elastic vascular properties in humans by exploiting
easily obtained measurements. This study could introduce a valuable tool for assessing arterial
stiffness reducing the cost and the complexity of the required measuring techniques. Further
clinical studies are required to validate the method in vivo.
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7.1 Introduction

Aging and vascular pathologies lead to changes in the elastic properties and the hemodynamics
of the arterial network [1; 2; 3; 4]. These changes have been shown to be highly associated
with increased cardiovascular risk or mortality [2; 3]. In this respect, the assessment of the
arterial stiffness is increasingly used in the clinical evaluation of a patient. Proximal aortic
characteristic impedance (Z,,) and total arterial compliance (Cr) are two powerful indices for
assessing the elastic properties of the proximal aorta and the entire arterial tree, respectively
[5; 1].

The impedance can be defined as the ratio of the pulsatile components of pressure and flow.
The impedance computed in the ascending aorta is defined as input impedance (Z;,), and
is a global systemic parameter, which encompasses all effects of wave travel and reflections
of the arterial part which is distal to the point of measurement. For a reflectionless system
Zin reduces to Z,,. The Z,, is a cardinal parameter related to aortic stiffness and geometry.
Prior art has included invasive [6; 7; 8; 9; 10; 11; 12; 13; 14] and non-invasive [13; 15; 16]
techniques for estimating Z,, in the frequency domain, whereby Z,, is approximated as the
average Z;, in the mid-to-high frequency range, the underlying assumption being that in those
frequencies the effects of reflected waves are minimal. Other approaches have proposed time-
domain calculations of the Z,, based on the early systolic part of pressure and flow waveforms
[17; 18; 19; 12], when reflections are considered negligible. All of the above frequency and time
domain methods require simultaneous recordings of pressure and flow in the aorta, which are
invasive (pressure) or inconvenient and expensive (flow).

Cr is a major global elastic property of the arterial system, being a determinant of the cardiac
afterload, and has significant pathophysiological relevance [20; 21; 22; 23]. It quantifies the
capacity of the vessels to expand under internal pressure and store blood during systole
without excessive pressure rise. Importantly, Cr is a significant determinant of central blood
pressure and decrease in Cr is associated with hypertension. However, direct in vivo non-
invasive measurement of Cr cannot be performed. Various methods have suggested the
indirect estimation of C7 [18; 24; 25; 5] using simultaneous recordings of the proximal aortic
pressure and flow or cardiac output.

Precise measurement of the Z,, and C7 may increase understanding of arterial physiopathol-
ogy and provide additional clinical markers for cardiovascular risk assessment. Yet, despite the
significant body of research, the invasive nature or/and the complexity of the current methods
have limited their applicability in every day clinical practice, while other surrogates of regional
arterial stiffness have been used more often [5; 26]. Thus, a technique that offers a reliable,
non-invasive, fast, and simple-to-use estimation of Z,, and Cr is still highly desirable. In view
of this need, this study proposes a novel methodology to evaluate Z,, and C7 using machine
learning.
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In our previous work, we demonstrated that the combination of in silico data with machine
learning modelling allows for validating a methodology to predict aortic hemodynamics and
cardiac contractility [27]. This approach can be easily extended and adapted in the estimation
of different cardiovascular quantities and case studies, such the one introduced in this work.
In particular, this paper proposes a method which derives Z,, and Cr from brachial blood
pressure (cuff BP) and regional PWV measurements, while it does not require central pressure
or flow data. To assess the validity of this concept, the introduced methodology was tested
using an in silico population generated by a previously validated cardiovascular simulator.
The schematic representation of the regression pipeline is illustrated in Figure 7.1.
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Figure 7.1 — Schematic representation of the training/testing pipeline for predicting aortic
characteristic impedance (Z,,), and total arterial compliance (Cr). SBP, systolic blood pres-
sure; DBP, diastolic blood pressure; HR, heart rate; cfPWV, carotid-femoral pulse wave velocity;
crPWV, carotid-radial pulse wave velocity. Adapted from [28].

7.2 Methods & materials

In silico dataset

In this study, we used a synthetic dataset which was designed to simulate various hemody-
namical states. Different hemodynamic cases (n = 3,818), representing both normotensive
and hypertensive adults, were simulated by altering key cardiac and systemic parameters of a
previously validated in silico cardiovascular model. The mathematical model (Figure 7.2) has
been well described in the original publication [29]. Literature data are only presented in terms
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of mean and standard deviation or/and minimum and maximum values; thus, variation of
the model’s parameters was performed with random Gaussian sampling. Cardiac parameters
were modified and different cardiac output values were simulated. Arterial geometry (i.e.
arterial length and diameter) was modified to represent various arterial tree sizes and body
types [30; 31]. Total peripheral resistance and arterial compliance were altered according
to the literature [32; 33; 34]. To simulate older or hypertensive individuals, in some cases,
stiffening in the aorta was considered as nonuniform and more pronounced as described in
our previous works [35; 36]. For a given set of input parameters, the model provides analytical
solutions of the pressure and flow at every arterial segment. The physiological validity of each
subject was assessed by comparing the simulated brachial and aortic systolic BP (SBP), DBP,
MAP, and pulse pressure (PP) to the reference values reported in the previously published
data by McEniery [37] (normotensive cases) and Bordin Pelazza and Filho [38] (hypertensive
cases). A subject was removed from the dataset if any of the BP values lied out of the 99.5 %
confidence intervals (mean+2.807 SD).

Figure 7.2 — The 1-D cardiovascular model that was used for the data generation. Adapted
from [28].

Computation of Z,, and Cr

The characteristic impedance at the root of the ascending aorta was calculated analytically

using the area compliance and the geometry of the ascending aorta, namely:

Zao= (7.1)

1
Ca

ﬁ‘

where p is the blood density equal to 1,050 kg/m3, A is the cross-sectional area of the ascending

188



7.2. Methods & materials

aorta, and C, is the area compliance of the ascending aorta, respectively.

The Cr was computed as the sum of volume compliance (c;) of all the arterial segments
included in the 1-D model (n = 103) and the terminal compliances described by the terminal

Windkessel models, namely:

103
Cr=)_ci. (7.2)
i

Regional PWV and BP data

The carotid-femoral pulse wave velocity (cfPWV) and carotid-radial pulse wave velocity (cr-
PWV) were calculated by a foot-to-foot algorithm using the tangential method. Pulse transit
times were computed between the two arterial sites, namely the left carotid and left femoral
artery, and the left carotid and the left radial artery, respectively. Formally, the tangential
method uses the intersection point of two tangents on the arterial pressure wave, i.e. the
tangent passing through the systolic upstroke and the horizontal line passing through the min-
imum of the pressure wave as previously described [39]. The travel lengths were determined
by summation of the lengths of the arterial segments within the transmission paths. Next, the
value of each PWV was calculated by dividing the total travel length by the pulse transit time.
Brachial systolic (brSBP) and diastolic BP (brDBP) were derived from the pressure waveform
at the left brachial artery.

Regression Analysis

The simulated data, i.e. brSBP, brDBP, heart rate (HR), cfPWV, ctPWV, Z,,, and Cr, were
organized in pairs (inputs: brSBP, brDBP, HR, cfPWV, crPWV, and outputs: Z,,, C7) and were
kept for the training/testing process. All the data were corrupted with artificial noise in
order to simulate potential measurement errors that often occur in the respective clinical
measurements. The noise allows for essentially harming the deterministic effect of the 1-D
computer model. Errors in measurements were simulated with a random distribution. In
particular, the error for each variable was randomly drawn from the range of [-15, 15] %
(simulating a maximum absolute noise level equal to 15 %). Subsequently, each variable value
was multiplied with a noise factor; for instance, for a randomly selected error of -6 %, the
respective variable value was multiplied with a noise factor equal to 0.94.

The data were partitioned into three subsets: (i) the train set, the set of training examples the
model is trained on, (ii) the validation set, which is used to tune the hyperparameters, and
(iii) the test set, which is used to test the trained model while it measures the generalization
performance. In our analysis, the train/validation/test split was selected to be 60 %/20 %/20 %.
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Table 7.1 - List of the selected hyperparameters for the predictive models.

Output variable Selected hyperparameters
RFR: max_depth | ANN: epochs

Zao 8 55

Cr 8 103

These percentages corresponded to 2,290/764/764 data instances, respectively. The data were
normalized using MinMaxScaler() function from sklearn library. For the regression process,
we used a Random Forest modelling procedure [40] and an Artificial Neural Network (ANN) to
estimate the target variables of interest. The formal structure of the Random Forest Regressor
(RFR) is shown in Figure 7.3. An RFR is a predictor consisting of a collection of randomized
base regression trees. These random trees are combined to form the aggregated regression
estimate:

™mX) =Eelr,X,0)], (7.3)

where Eg[.] denotes expectation with respect to the random parameter, conditionally on X
(matrix consisting of the input features), and © = [0, ... , O] are independent and identically
distributed (i.i.d.) random variables outputs of each tree. The estimations were provided
by aggregating the individual predictions of each tree. The trees were grown by applying
bootstrapping. Based on the training data, each regression tree grew for each of the bootstrap
samples. Estimators were randomly sampled and the best split was chosen at each node.

A formal representation of an ANN is illustrated in Figure 7.4. Our ANN was composed of an
input layer, a hidden layer, and an output layer. Typically, the input layer sequentially receives
the input features as an input vector into the ANN. The hidden layer has multiple neurons
connected to the input layer with weights. Each neuron is characterized by a transfer function
of neuron (Figure 7.4). The training of ANN is conducted by determining the difference
between the processed output of the network and the target output, namely the error. Training
data are fed to the input layer and continue to the succeeding hidden layer, where they pass
through the neurons’ transfer functions, until they finally arrive radically transformed at the
output layer. During training, the network continually adjusts its weights and thresholds
until the ANN produces output which is increasingly similar to the target output (errors are
minimized). In our analysis, the training set was employed to optimize the weights of neurons
in the hidden and output layer using the Adam optimizer [41]. Upon tuning, the samples of
the test set were used as input to the optimized ANN to obtain the estimated Z,, and Cr.

A critical issue while training a machine learning model on the sample data is overfitting.
For instance, when the number of epochs used to train an ANN is more than necessary, the
training model learns patterns that are specific to the sample data to a great extent. In that
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Figure 7.3 — Typical representation of a random forest regression model. Adapted from [28].

case, the model is incapable to perform well on a new dataset. In other words, the model loses
generalization capacity by overfitting to the specific training data. To mitigate overfitting and to
increase the generalization capacity, the model should be trained for optimal hyperparameter

values.

For the RFR, we selected 100 estimators (namely the number of trees in the forest), while we
decided to optimize the value for max_depth (the maximum depth of the tree). For the ANN,
the batch_size (the number of samples that will be propagated through the network) was set
to be equal to 10, and the number of epochs was optimized, respectively. The number of
epochs is a hyperparameter that defines the number of times that the learning algorithm will
work through the entire training dataset. By optimizing only one hyperparameter, we keep the
complexity of the models low, and thus the models are more likely to perform well on new
data and are less restricted to the peculiarities of the particular data used.

For selecting the optimal value for max_depth, we calculated the train score and the validation
score for various values of max_depth in the range of [1, 10]. The score for RFR indicates
the coefficient of determination R? for the predictions. Subsequently, for each target output
variable, the max_depth value with the maximum score was selected. In a similar manner,

191



Chapter 7. Determination of aortic characteristic impedance and total arterial
compliance from regional pulse wave velocities using machine learning

Hidden layer
Input layer Output layer

Test & re-evaluate
cost function

N\
Data —» % —> Prediction
o

Update v&éiEHts &
retest

Transfer function of a neuron

' Bias '
E Weights l :
T @O——— wi '
E o—— w2 s: Activati E
' @ > w3 > > N | /CIVELTED | - Output *
' > function .
: ® — wi / :
F@—— w5 '

Figure 7.4 — Typical representation of an artificial neural network. Adapted from [28].

the train and validation losses [i.e. mean square error (MSE)] were calculated for the ANN.
In that case, loss values can be monitored by Early stopping call back function. When there
is an increment observed in loss values, training comes to halt and the respective value of
epoch indicates the optimal selection. For both Z,, and Cr, the highest accuracy was reported
for the RFR with max_depth = 8, whereas for ANN, training stopped at 55" epoch and 103"¢
epoch for Z,, and Cr, respectively. Therefore, the optimal number of epochs was set to 55 and
103 for the two estimators, respectively. All optimized hyperparameters are presented in Table
7.1. Subsequently, we plotted the respective learning curves for the RFRs using the optimal
hyperparameters (Figures 7.5A,B). Each learning curve was fitted using the observed accuracy
[in terms of root mean square error (RMSE)] according to a given training sample size. The
training size was modified from 1 to 95 % of the total number of training data instances (20
samples of training size). The training error was low, and thus the training data appear to
fit well by the models (low bias). Furthermore, low variance was indicated by the small gap
between the two curves. Finally, the testing set was fed into the trained RFR to estimate Z,,
and Cr and the precision was evaluated.

Along with the main model configuration, which uses as inputs brSBP, brDBP, HR, cfPWV, and
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crPWV (M1), we additionally evaluated three additional model configurations using different
sets of inputs: (i) one which does not include HR as an input (M2), (ii) a second one that
excludes HR and replaces brSBP and brDBP with MAP (M3), and (iii) a third one that uses only
the PWV values (M4). The hyperparameters values were set equal to the same values as those
of M1.

A B
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Figure 7.5 — Learning curves presenting the impact of the number of data instances on the
RFR’s performance for Z,, (A) and Cr (B). Adapted from [28].

Furthermore, we assessed the importance of each input feature using the permutation feature
importances [42] for RFR. The concept of permutation feature importances relies on mea-
suring the importance of a feature by calculating the increase in the prediction error after
permuting the feature. The permutation importances were computed by shuffling the values
of each feature on the test set and by estimating the RMSE after the permutation. This process
was repeated 20 times and the mean and standard deviation of the increase in RMSE were

reported.

The training/testing pipeline and the post-analysis were implemented using the Scikit-learn
library [43] in a Python programming environment (Python Software Foundation, Python
Language Reference, version 3.6.8, Available at http://www.python.org). The Pandas and

NumPy packages were also used [44; 45].

Sensitivity to training data size

The number of data instances used for training, namely the training size, has a major effect on
the accuracy of the model’s predictions. The model’s precision as a function of the number
of training samples was evaluated by conducting sensitivity analysis. In this respect, the
regression analysis for RFR was repeated and the RMSE was calculated after decreasing the
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training size (n = 2,290) from 99 to 1 % of the total number of cases. The accuracy was
compared using the same testing population (764 subjects).

Comparison to prior art

We compared our RFR with prior methods that provide estimates of Z,, and Cy. Application
of previous methods required the central (aortic) blood pressure and flow waves. Systolic
and diastolic phases were defined by the dicrotic notch from the central blood pressure
waveforms and the first zero crossing for blood flow waves. Automated detection of the
peaks and minima was performed using an in-house custom software in Matlab (Mathworks,
Natick, Massachusetts, United States). The Z,, was computed using two previously described
methods:

¢ Time-derivative peaks method:
Zﬂo = P;nux/Q;nax’

where P/, .. and Q) , . are the maximum values of the pressure and flow time derivatives,
respectively [12].

* Peak flow method:

_ PQmax_aDBP

Z
“ Qmax

where aDBP is the aortic DBP, Q4 is the maximum flow value, and P4y is the aortic
pressure magnitude at the maximum flow value [12].

The Cr was derived using the following previously proposed techniques:

* Decay time method: The decay time method (DTM) is based on the two-element Wind-
kessel (WK) model of the systemic circulation. Its principle is that during diastole there
is no inflow from the heart, and thus, the decrease of aortic pressure, is characterized
by the decay time. This decay can be fitted monoexponentially to any portion of the
diastole to yield the characteristic time or time constant, which is RC7. The Cr can be
then calculated for a known value of peripheral resistance (R) [46].

¢ Pulse pressure method: The pulse pressure method (PPM) [47] is based on the fact that
the modulus of the input impedance of the arterial system is represented very well by the
two-element WK model for the low frequencies (1?5 harmonic). Therefore, the pulse
pressure will be similar in the true arterial system and the two-element WK model. The
PPM uses an iterative process that yields the value of Ct that gives the best fit between
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the measured pulse pressure and the pulse pressure predicted by the two-element WK
model.

We applied the aforementioned methods on the test data (n = 764) and compared the estimates
to the machine learning-derived predictions. The reason that we did not apply the above
methods to the entire dataset was to compare these methods and the machine learning model
on the exact same test population. Artificial random noise of the same order of magnitude
(£ 15 %) was also considered for the data used for the techniques above. The pressure and
flow signals were uniformly multiplied by a scaling factor which was randomly selected as
described in the Regression analysis section.

Statistical analysis

Data are presented as mean and standard deviation (SD). The agreement, bias, and precision
between the model predictions and the reference values were assessed by using the Pearson’s
correlation coefficient (r ), the RMSE, the normalized RMSE (nRMSE), and the Bland-Altman
analysis [48]. The nRMSE was based on the difference between the minimum and maximum
values of the dependent variable (y) and was computed as RMSE/ (Y nax—Ymin). We performed
linear leasts quares regression for the predictions and the reference data. The slope and the
intercept of the regression line were reported. Two-sided P-value for a hypothesis test whose
null hypothesis is that the slope is zero, using Wald Test with ¢-distribution of the test statistic,
was calculated. The P-value < 0.05 were considered as significant. The statistical analysis was
implemented in Python (Python Software Foundation, Python Language Reference, version
3.6.8, Available at http://www. python.org).

7.3 Results

The distributions of the cardiovascular parameters of the virtual study cohort are presented
in Table 7.2. The correlations between the input features and the target output values are
also given in Table 7.3. The highest values of Pearson’s correlation coefficient were reported
between Z,,/Cr and the two PWV values (r = 0.84).

Comparison of model predictions to the reference values

We compared the RFR and ANN estimations to the reference data for each target output.
Table 7.4 tabulates the metrics for the performance assessment of the evaluation scheme
for all model configurations. The results for the RFR M1 and ANN M1, which correspond
to the best-performing configurations, are visualized below. The scatterplot between the
RFR-predicted and the actual Z,, values is given in Figure 7.6 (top panel). The Bland-Altman
plot is provided in Figure 7.6 (lower panel), in which zero bias was reported. The limits of
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Table 7.2 — Summary of the cardiovascular characteristics of the virtual study cohort (n =
3,818).

. Value
Variable (n=3,818)
Brachial systolic blood pressure [mmHg] 134.51+24.1
Brachial diastolic blood pressure [mmHg] | 77.27+21.31
Brachial pulse pressure [mmHg] 57.24+22.58
MAP [mmHg] 94.51+£20.29
Aortic systolic blood pressure [mmHg] 122.54+23.73
Aortic diastolic blood pressure [mmHg] 80.5+21.48
Aortic pulse pressure [mmHg] 42.04+19.38
Stroke volume [mL)] 81.18+8.03
Heart rate [bpm] 73.26+14.9
Aortic impedance [mmHg.s/mlL] 0.056+0.012
Total arterial compliance [mL/mmHg| 1.14+0.47
Total peripheral resistance [mmHg.s/mL] 0.984+0.21
Carotid-femoral PWV [m/s] 8.06+1.03
Carotid-radial PWV [m/s] 10.17+1.3

agreement (LoA), within which 95 % of errors are expected to lie, were found to be equal to +
0.012 mmHg.s/mL. Figure 7.7 illustrates the Ct predictions in comparison to their reference
values. Again, bias was close to zero (-0.01 mL/mmHg), while the LoA were equal to + 0.4
mL/mmHg. The scatterplot and Bland-Altman plot for the ANN are shown in Figures 7.8
and 7.9 for Z,, and Cr respectively. For Z,,, the ANN-LoA were (-0.013, 0.010) mmHg.s/mL,
whereas for C7 predictions, the ANN-LoA found to be subtly narrower than the RFR and equal
to £ 0.3 mL/mmHg. For both machine learning approaches, no biases were reported. The
mean difference between the Z,, predictions and the ground truth Z,, values lied within a
similar range for the two models, i.e. (-0.012, 0.012) and (-0.013, 0.010) mmHg.s/mL for RFR
and ANN, respectively. The LoA of the C7-RFR [(-0.39 0.37) mL/mmHg] were slightly broader
than the LoA of the C7-ANN estimator [(-0.32 0.33) mL/mmHg]. Substantially higher errors
were reported when the BP information was omitted from the inputs, especially for the Z,,
prediction (correlation was around to 0.75). Table 7.5 presents the feature importances of the
input regressors for Z,, and Cr, respectively. For Z,,, brDBP appeared to have the highest
importance level followed by brSBP and crPWV. In the case of Ct, brDBP was reported to have
the dominant importance value, followed by cfPWV and crPWV.

Sensitivity to training data size

The nRMSEs decreased gradually with increasing training size (Figure 7.10). Errors in Z,,
were higher than 8 % for a training dataset with 687 subjects or less. The nRMSE of the Cr
predictions exceeded 8 % when the training size was smaller than 458 data instances. It was

196



7.4. Discussion

Table 7.3 — Correlation between the input features and the target outputs.

r
Parameters (n=3,818)
brSBP/Z,, 0.51
brDBP/Z,, -0.41
HR/Zg40 0.17
cfPWV/Z 4, 0.87
crPWV/Z,0 0.85
brSBP/Cr -0.48
brDBP/Cr 0.39
HR/Ct -0.16
CfPWV/CT -0.87
crPWV/Cr -0.84

observed that, for both curves, addition of new data points had no significant impact on
the accuracy after reaching the 20 % of the entire training population (corresponding to 458
subjects).

Comparison to prior art

Table 7.6 presents the comparison between our proposed PWV-based machine learning
models and a list of previously published methods, which, in contrast to our method, use
the central aortic blood pressure and flow waveforms. The PWV-based machine learning
estimators for Z,, outperformed all the other methods achieving a correlation of 0.9. The
peak flow method and the time-derivative peaks method demonstrated lower accuracy (r <
0.79 and broader LoA). Estimation techniques for Cr yielded correlation coefficients equal or
higher than 0.93.

7.4 Discussion

The Z 4, contributes to the pulsatile arterial load faced by heart during ejection and has been
shown to be an independent predictor of LV mass index in hypertension [49]. Moreover, Ct
offers a valuable assessment not only for cardiovascular (CV) risk, but also for the relationship
between structural and functional changes in the arterial system with respect to its elasticity
[50]. In a progressively aging population, effective monitoring of powerful biomarkers, such
as Z4 and Cr, is imperative. Despite the great efforts for monitoring several biomarkers for
arterial stiffness, there is evidence that the prognostic value of arterial stiffness as assessed by
current techniques might be compromised in the elderly or special populations [51; 52; 53; 54].
Furthermore, there are methods, such as the pulse contour techniques for minimally invasive
cardiac output monitoring, which are dependent on Cr [55].
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Table 7.4 — Regression statistics between model predictions and reference values.

Model Slope Intercept r P-value RMSE nRMSE
RFRz,0 M1 0.77 mm(I)—.I(;sz/mL 0.89 | <0.001 mm(l)-‘l(;(.)SG/mL 7.78 %
RFR;,, M2 | 0.77 mm(;'l(;f/mL 0.89 | <0.001 mm%(;?f/mL 7.77%
RFRz,, M3 0.66 mm(I)—.I(g);sg/mL 0.81 <0.001 mm?—ﬁff/mL 9.91 %
RFRz4o M4 | 0.55 mm(;g:/mL 0.75 | <0.001 mm%(;?:/mL 11.20 %
RFRcr M1 0.81 mL/Orﬁrlan 0.93 | <0.001 mL/();ang 7.31 %
RFRcT M2 0.80 mL/Orﬁrang 0.93 | <0.001 mL/Or'rirEing 7.37 %
RFRcT M3 0.73 mL;)I.I?rlan 0.88 | <0.001 mL/OI.I?ang 9.21 %
RFRcT M4 0.63 mL/()Iﬁrzrng 0.82 | <0.001 mL/OrﬁrEing 11.11 %
ANN 4, M1 | 0.86 mm%l(;(.):/mL 0.90 | <0.001 mm%(;?f/mL 7.47 %
ANNz,o M2 | 0.77 mm(I)—‘I(g);sZ/mL 0.90 | <0.001 mm(l)-‘l(g);(.):/rnL 7.40 %
ANNz,, M3 | 0.69 mm(I)-.I(;s(s/mL 0.83 | <0.001 mm(l)-.I(;(.):/mL 9.60 %
ANNz4, M4 | 0.56 mrn(I)-.I(:sZ/mL 0.76 | <0.001 rnm?—ﬁ;?f/mL 11.28 %
ANNcT M1 0.88 mL/Or.rif;ng 0.95 | <0.001 mL/Or'rir(ing 6.26 %
ANNcT M2 0.89 mL/OI.;Zan 0.94 | <0.001 mL/OI.Iang 6.87 %
ANNcT M3 0.75 mL/OIﬁrSing 0.88 | <0.001 mL?Iﬁang 9.29 %
ANNcT M4 0.64 mL/OI.rAfrang 0.83 | <0.001 mL/Or.r??an 10.94 %

Table 7.5 — Feature importances for the prediction of Z,, and Cr using RFR.

Feature Permutation importance

Z,, ImmHg.s/mL] | Cr [mL/mmHg]
Brachial SB 0.0031+0.0002 0.09+0.01
Brachial DB 0.0058+0.0002 0.21+0.01
Heart rate 0.0001+0.0000 0.01+0.00
Carotid-femoral PWV 0.0016+0.0001 0.13+0.01
Carotid-radial PWV 0.0021+0.0001 0.12+0.01
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Figure 7.6 — Comparison between the estimated and the reference Z,, data. Scatterplot and
Bland-Altman plot between the estimated Z,, and the reference Z,, using the RFR. The solid
line of the scatterplot represents equality. In Bland-Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

Measurement of PWV can be utilized for the estimation of both local [56; 57] and regional
arterial distensibility [58]. The evaluation of PWV is based on the estimation of the pulse transit
time between two arterial sites, and the measurement of the distance between them. There is
emerging evidence supporting that aortic PWV, i.e. cfPWYV, is an independent predictor of CV
risk [26; 59]. Likewise, the peripheral PWYV, e.g. ctPWYV, has been shown to be an informative
indicator of vasodilator reserve and a predictor of coronary artery disease [60]. Despite the
widespread acceptance of PWV, we should not be detracted from the fact that PWV per se
is still an indirect measure of the arterial properties and provides no immediate measure
of the adverse effects of vascular stiffening on circulatory hemodynamics. For instance,
although PWV might be often clinically relevant, it is not the sole determinant of the timing
and consequences of the reflected waves [61; 62]. The C7 may be physiologically more relevant
than regional or local arterial compliance surrogate (such as PWVs), in terms of modulation
of cardiac load, LV function, and CV risk assessment. In particular, the Cr can have greater
impact in assessing elderly population or individuals with increased vascular stiffness, where
PWV appears to have limited prognostic value. Moreover, Z,, has been associated with cases
of increased cardiac and cerebral mortality [2; 59]. On the other hand, PWV is computed
between two arterial sites, and thus cannot provide a global description of the arterial network
as Z4, does. Evidence reported by Segers et al. [16] presents that measurement of central
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Figure 7.7 — Comparison between the estimated and the reference Cr data. Scatterplot and
Bland-Altman plot between the estimated Cr and the reference Cr using the RFR. The solid
line of the scatterplot represents equality. In Bland-Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

pressure and flow for the evaluation of global arterial parameters is more relevant and provides
major mechanistic information that it should be also considered when the more frequently
acquired PWV is evaluated.

Knowledge of Z,, and Cr might have additional diagnostic impact as well as additive prognos-
tic value beyond PWV. Estimation of the Z,, and Cr is, however, difficult in clinical practice,
as it requires concomitant recordings of pressure and flow waveforms in the proximal aorta
[63; 12; 47; 15]. The methodological complexity and lack of validation have prohibited their
application in the everyday clinical practice. For this reason, capitalization of the regional PWV
measurements for estimating Z,, and Ct may permit their clinical assessment in a simple

and cost-efficient way.

The present study suggested a machine learning predictive tool for Z,, and Cr by using
regional PWV measurements and cuff BP. The cfPWV is a measure of central arterial stiffness,
whereas the crPWV expresses a mix of central and peripheral stiffness of the arterial tree. The
principle of this concept is that the combined information embedded in the two indicators
of regional elasticity can lead to an improved characterization of Z,, and C7. The results
indicated that the suggested framework appears to apply well over a wide range of simulated
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Figure 7.8 — Comparison between the estimated and the reference Z,, data. Scatterplot and
Bland-Altman plot between the estimated Z,, and the reference Z,, using the ANN. The solid
line of the scatterplot represents equality. In Bland-Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

physiological conditions. The methodology was appraised by testing two different machine
learning models which, with proper hyperparameters’ selection, achieved a similar predictive
precision. This may also suggest that there is no high dependency on the nature of the machine
learning approach, while it can provide preliminary evidence of the validity of the proposed

framework.

Our methodology seems to offer a competitive advantage in comparison to prior methods.
More specifically, it does not require central pressure and flow waves, for which the gold
standard measurements are invasive. The invasive nature of the central BP wave’s acquisition
has been addressed either by the use of the carotid BP which is considered a good surrogate
of aortic BP and can be easily acquired via tonometry, or by the use of devices that provide
an approximation of the central BP wave via transformation of the radial BP wave [64; 65].
Measurement of central flow has been feasible by non-invasive techniques (e.g. ultrasound
or magnetic resonance imaging) which are, however, expensive and rather dependent on
operator skills. Yet, the results of this study showed that it outperformed some of the existing
estimators. Previous methods for estimating Z,, had significantly wider LoA when compared
to our PWV-based machine learning estimators, while all current methods were also found to
have high biases (> 0.01 mmHg.s/mL). For Cr, PWV-based ANN had a similar performance
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Figure 7.9 — Comparison between the estimated and the reference Cr data. Scatterplot and
Bland-Altman plot between the estimated C7 and the reference Cr using the ANN. The solid
line of the scatterplot represents equality. In Bland-Altman plot, limits of agreement (LoA) are
defined by the two horizontal dashed lines. Adapted from [28].

to the PPM estimator, while the DTM yielded a lower precision. It is to be stressed that the
comparison of the PWV-based machine learning estimators with the prior art cannot be
direct and absolute, due to two main reasons: (i) the different nature of the required inputs,
and (ii) the simplified simulation of the measurement error in the time signals. Specifically,
although the previously published techniques are non-invasive, they require simultaneous
measurement of the central blood pressure and flow, which are more difficult to acquire
compared to the measurement required for the proposed machine learning estimator. In
our experiments, the testing of these methods was done using the simulated aortic blood
pressure which is the gold standard; in a real clinical setting, invasive aortic blood pressure is
rarely available. Regarding the noise simulation, the artificial errors added to the signals were
simplified; a random scaling factor was selected and multiplied with the entire signal. Hence,
the error did not vary during the entire beat, and, as a result, the shape of the wave, to which
the computational algorithms are highly dependent, remained unaffected.

The main advantage of our proposed method pertains to its simplicity and convenience (for
both the patient and the physician) rather than its increased accuracy in comparison to the
state of the art. The existing techniques require non-invasive, yet expensive and complex, flow
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Figure 7.10 — Sensitivity of precision in terms of nRMSE to the number of the training data.
The 100 % of the training size corresponds to 2,290 cases. Adapted from [28].

or velocity measurements for evaluating Z,, and Cr. It is undeniable that previous studies
have shown that current non-invasive techniques provide high accuracy and reliability for
both Z,;, and C7 when compared with the invasive ground truth [13; 16]. However, being able
to assess Z,, and Cr from PWVs alone could be very valuable given that such an approach
eliminates the need for flow measurement which requires magnetic resonance imaging or
echocardiographic procedures. Undoubtedly, both techniques are not as accessible as tonom-
etry, are much more expensive in comparison to the simple tonometric recordings, and render
necessary the presence of well-trained personnel to handle the required equipment.

Following a regression analysis’ concept, in a previous in silico study, Vardoulis et al. [66]
demonstrated that Cr could be effectively derived using only cfPWV. They provided a sim-
ple equation that directly relates the cfPWV measurement to Cr. The results hypothesized
that solely cfPWV should be sufficient for accurately estimating Cy. Further light upon the
significance of including more features to the regression method can be provided by assessing
the features’ importance levels. As per the feature importances of our study, indeed cfPWV
appeared to be among the most significant parameter for estimating Cr. In order to further
verify the necessity of including additional features to cfPWV (namely cuff BP and ctPWV), we
predicted Cr using only cfPWV. Following a similar approach with Vardoulis et al. yielded a
lower prediction precision with an nRMSE = 12.4 %, a zero bias, while LoA were reported to be
+ 0.64 mL/mmHg. This error is approximately two times higher than the error provided by the
machine learning model of this study (6.26 % from ANN estimator). Although the cfPWV-based
estimator performed adequately, we may deduce that inclusion of both cfPWV and crPWV im-
proves the precision in Cr estimation. Importantly, this apparently slight improvement might
be rather necessary when performing the analysis on an in vivo population. Yet, the regression
analysis, which uses both PWV values might provide a more clinically relevant estimation of
Cr, as it combines both a proximal and a distal approximation of arterial stiffness, and thus a
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Table 7.6 — Comparison of the proposed machine learning-based Z,, and Cr estimators to
prior art.

Bland-Alt
Estimated Z,,