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Abstract

In a progressively aging population, it is of utmost importance to develop reliable, noninvasive, and cost-effective tools to esti-
mate biomarkers that can be indicative of cardiovascular risk. Various pathophysiological conditions are associated to
changes in the total arterial compliance (CT), and thus, its estimation via an accurate and simple method is valuable. Direct
noninvasive measurement of CT is not feasible in the clinical practice. Previous methods exist for indirect estimation of CT,
which, however, require noninvasive, yet complex and expensive, recordings of the central pressure and flow. Here, we intro-
duce a novel, noninvasive method for estimating CT from a single carotid waveform measurement using regression analysis.
Features were extracted from the carotid wave and were combined with demographic data. A prediction pipeline was adopted
for estimating CT using, first, a feature-based regression analysis and, second, the raw carotid pulse wave. The proposed
methodology was appraised using the large human cohort (N = 2,256) of the Asklepios study. Accurate estimates of CT were
yielded for both prediction schemes, namely, r = 0.83 and normalized root mean square error (nRMSE) = 9.58% for the fea-
ture-based model, and r = 0.83 and nRSME = 9.67% for the model that used the raw signal. The major advantage of this
method pertains to the simplification of the technique offering easily applicable and convenient CT monitoring. Such an
approach could offer promising applications, ranging from fast and cost-efficient hemodynamical monitoring by the physician
to integration in wearable technologies.

NEW & NOTEWORTHY This article introduces a novel artificial intelligence method to estimate total arterial compliance (CT) via
exploiting the information provided by an uncalibrated carotid blood pressure waveform as well as typical clinical variables. The
major finding of this study is that CT, which is usually acquired using both pressure and flow waveforms, can be accurately
derived by the use of the pressure wave alone. This method could potentially facilitate easily applicable and convenient monitor-
ing of CT.

artificial neural network; machine learning; noninvasive monitoring; pulse wave analysis; vascular aging

INTRODUCTION

In a progressively aging population, it is of utmost impor-
tance to develop reliable, noninvasive, and cost-effective
tools for estimating relevant biomarkers that can be indica-
tive of cardiovascular risk. Numerous invasive and noninva-
sive markers have been researched, but there is still the need
for additional structural and functional parameters that
would be able to assess cardiovascular risk (1). The total arte-
rial compliance (CT) is a biomechanical property of the
arterial tree with great physiological and pathological impor-
tance (2–4). CT and peripheral resistance constitute a major
part of the arterial load on the heart (5). Arterial compliance
expresses the ability of the arterial system to store blood dur-
ing systole without excessive pressure rise and influences
central blood pressure (6) and stroke volume (7). The CT is
becoming a promising parameter for evaluating assessment

of the relationship between structural and functional
changes in the vascular system with respect to its elasticity
and capacity (8, 9). Alterations in arterial compliance are
associated to various physiological (aging) (10) or pathologi-
cal (hypertension) conditions (11), which cannot be necessar-
ily assessed by current biomarkers. Importantly, CT has been
found to be superior over traditional evaluation techniques
including pulse pressure and echocardiography (9, 11). In
addition, other studies have shown that CT was proven ca-
pable of differentiating among diseased, elderly, and
healthy individuals (10–12). In view of the emerging evi-
dence on the importance of CT (8), the development of an
accurate and simple method for its estimation may be
valuable.

Direct noninvasive measurement of CT is not feasible in
the clinical practice. Several methods have been proposed
for indirect estimation of CT (13–16). Most commonly, these
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methods require simultaneous recordings of the proximal
aortic pressure and flow waves. Some of the most reliable
and accurate techniques include the decay time method
(DTM), the area method (AM), and the pulse pressure
method (PPM), (15, 17). The principle of the DTM is that dur-
ing diastole, there is no inflow from the heart, and thus, the
decrease of aortic pressure is characterized by the decay
time. This decay can be fittedmonoexponentially to any por-
tion of the diastole to yield the characteristic time or time
constant, which is RCT, where R is a known value of periph-
eral resistance (17). The AM was introduced by Randall et al.
(18), and it essentially represents an integral variation of the
exponential decay method. Compliance is calculated from
RCT =

Ð t2
t1
Pdx=ðP1 � P2Þ, where P1 and P2 are diastolic pres-

sure at time points t1 and t2, respectively. The PPM is based
on the fact that the modulus of the input impedance of the
arterial system is represented very well by the two-element
Windkessel model for the low frequencies (1st to 5th har-
monic). Therefore, the pulse pressure will be similar in the
true arterial system and the two-element Windkessel model.
The PPM uses an iterative process that yields the value of CT

that gives the best fit between the measured pulse pressure
and the pulse pressure predicted by the two-element
Windkessel model.

Yet, the invasive nature, lack of convenience, and high
cost of the required measurements have limited the
assessment of CT, namely, the inverse of arterial stiffness,
in everyday clinical practice, whereas surrogates of local
or regional arterial stiffness have been applied commonly
(16, 19). Measurement of carotid-femoral pulse wave ve-
locity (cfPWV) is considered as the gold standard to eval-
uate arterial stiffness (20).

Recent advances inmachine learning (ML) have expanded
the areas and the opportunities in developing novel model-
ing and predictive methods for clinical use (21). In a previous
study, Tavallali et al. (22) proposed and validated a method
for estimating cfPWV from the carotid waveform and clinical
parameters using neural networks. Their results showed that
this approach can provide accurate estimates of cfPWV,
offering an advancement in the assessment of arterial stiff-
ness via cfPWV.

In view of these nascent opportunities, the present
study introduces a novel, noninvasive, cost-efficient
method for estimating CT from a single carotid wave-
form measurement using regression analysis. The pro-
posed methodology uses an uncalibrated carotid blood
pressure waveform that is subsequently calibrated using
the brachial blood pressure values. Features are
extracted from the carotid wave and are combined with
readily available clinical parameters such as age, sex,
height, and weight. A prediction pipeline is adopted for
estimating CT using, first, a feature-based regression
analysis and, second, the raw carotid pulse wave. A main
advantage of this method pertains to the avoidance of
aortic blood flow recording that is commonly required
by prior CT estimators. Given that accurate values of CT

are cumbersome to obtain in the intact organism, in this
study, the accuracy of the predictive model was eval-
uated by comparing the predictions against the CT val-
ues that were derived using the precise and extensively
validated PPM (14, 15, 23).

MATERIALS AND METHODS

Asklepios Database

Human data were available from the Asklepios study, a
broad prospective longitudinal study with the aim of assess-
ing the development and progression of cardiovascular dis-
ease (24). A total of 2,404 subjects were found eligible to be
included in the study. The participants underwent a nonin-
vasive evaluation of central hemodynamics, including
recordings of carotid blood pressure and aortic blood flow
waveforms. The inclusion and exclusion criteria are listed in
Table 1. The study protocol was approved by the ethical com-
mittee of Ghent University Hospital, and written informed
consent of participation was given by all subjects. A compre-
hensive description of the Asklepios data can be found in the
original publication (24).

Measurement of Pressure and FlowWaves

Blood pressure recordings were performed at the left com-
mon carotid artery via applanation tonometry using a Millar
pen-type tonometer (SPT 301; Millar Instruments, Houston,
Texas). The measurement setup, processing, and calibration
procedure (based on sphygmomanometer systolic and dia-
stolic blood pressure and applanation tonometry at the
brachial artery) were previously described in detail (24, 25).

The carotid pressure was derived as a “mean”waveform of
multiple beats from a 20-s recording (6). Pressure data were
recorded in continuous sequences of 20s. The postprocess-
ing included signal filtering (Savitsky–Golay filter, MATLAB,
The MathWorks Inc.). Subsequently, identification of indi-
vidual cycles, detrending (i.e., linearly smoothing out even-
tual differences in the numerical value of the start and end
of the cycle), and averaging were performed. The cycles with
a cycle length shorter or longer than 20% of the mean cycle
duration were automatically deselected. The same applied
for cycles with a shape surpassing the “envelope” curves,
which were constructed from the average ± (two times the
standard deviation). The process was repeated iteratively
until all cycles were within the “envelope” curves. As an arbi-
trary quality criterion, data were accepted only if minimally
10 cycles were retained. The average of these cycles was con-
sidered as the tonometry recording for the carotid artery.
The carotid waveform was calibrated by assuming that dia-
stolic and mean BP values remain fairly constant for the
major arteries.

Flow at the aorta was measured using ultrasound (VIVID
7; GE Vingmed Ultrasound, Horten, Norway) from the cross-
sectional area and blood velocities in the left ventricular out-
flow tract (LVOT). The internal diameter of the LVOT was
measured in the parasternal long-axis view at the valve
annulus, and LVOT area was calculated assuming a circular
cross section. Flow velocities were obtained in the LVOT via
pulsed-wave Doppler in the apical five-chamber view.
Images were exported in raw DICOM format and processed
offline within a dedicated software interface in MATLAB
(The MathWorks, Natick, MA). For each cardiac cycle, the
onset and end of systolic ejection were visually delineated
with two cursors, after which the contours in the systolic
phase were automatically traced using the transition in pixel
intensity above a user-defined threshold value. Two to three
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cycles were averaged, and the average cycle subsampled to
500 sample points and smoothed using a Savitsky–Golay fil-
ter (order 3, frame width 31). The maximal velocities were
multiplied with the LVOT cross-sectional area to obtain the
aorta flow waveform (assuming a flat velocity profile in the
LVOT). This approach yielded physiologically relevant val-
ues of stroke volume and cardiac output (2).

The heart rate (HR) was calculated from the average dura-
tion of pressure and flow signals. The time vectors of the two
signals were normalized, synchronized, and then denormal-
ized, rendering the heart cycle length equal to the average
length of the pressure and flowwaveform.

Derivation of the Reference Compliance

Measurement of the real CT values in a human cohort is
not feasible. In the present study, the pulse pressure
method (PPM) was used as the ground truth value for
compliance (23). The PPM is based on the fact that the
modulus of the input impedance of the arterial system is
represented very well by the two-element Windkessel
model for the low frequencies (1st to 5th harmonic).
Therefore, the pulse pressure will be similar in the true
arterial system and the two-element Windkessel model.
From the ratio of mean pressure over mean flow, we
derive peripheral resistance. Then, using measured flow
as input to the two-element Windkessel, the predicted
pulse pressure is fit to the actual pulse pressure by adjust-
ing compliance. Compliance adjustment is done by a sim-
ple ‘‘trial and error’’ type of approach knowing that lower
compliance yields larger pulse pressures. Following an
iterative process, the value of the compliance (CT) that
gives the best fit of the measured pulse pressure provides
the estimate of the compliance. The method has been
thoroughly validated both in silico under various hemo-
dynamical states (17, 23) and against in vivo data (14) and
it has been proven to be capable of accurately estimating
arterial compliance.

Features Extraction from the Carotid Pressure Wave

Features were extracted from the carotid pressure signal
and its time derivative (Fig. 1). Concretely, the features
included the systolic blood pressure (SBP), the diastolic
blood pressure (DBP), the dicrotic notch pressure point
(PDN), the dicrotic notch time point (tDN), the upstroke sys-
tolic area (Aupstroke), the total systolic area (Asystolic), the dia-
stolic area (Adiastolic), the peak of time derivative (dP/dtmax),
the time point that peak derivative occurs (tdP=dtmax

), and the
heart rate (HR).

Regression Analysis

The extracted features, i.e., SBP, DBP, MAP, PP, PDN, tDN,
Aupstroke, Asystolic, Adiastolic, dP/dtmax, tdP=dtmax

, HR, as well as
demographic data including age, sex, height, and weight
were used as the input features to the ML model. The CT (as
derived from PPM) was set to be the target output variable.
The data were organized in pairs (inputs-outputs) and were
kept for the training/testing process. For the regression
process, we used an artificial neural network (ANN) and a
linear regressor (LR) to estimate the target variable of inter-
est. Furthermore, the performance of a predictive model
including cardiac output (CO) as an additional input feature
was assessed. It should be noted that the models including
the CO feature are not considered as the main focus of the
present study. We, however, decided to include them in the
analysis for investigating the importance of CO in the esti-
mations. For the ANN, a fixed one-hidden layer structure
was selected and the “Adam” optimizer was used (26). In
addition, the ANN was trained/tested using as input the
entire raw carotid waveform, as well as demographic data.
The carotid BP waveforms were sampled at 100 data points
per cycle. The predictivemodels are summarized in Table 2.

Of the 2,404 participants, 148 were excluded due to miss-
ing or erroneously measured data. Their exclusion led to a
final size population equal to 2,256 participants. The data

Table 1. Asklepios inclusion and exclusion criteria

Inclusion Criteria
1. Volunteers, men and women
2. Aged 35–55 yr at study initiation
3. Domicile, Erpe-Mere or Nieuwerkerken

Exclusion Criteria
1. Clinical presence of atherosclerosis/atherothrombosis

a. Atherosclerosis: symptomatic or hemodynamically significant (>50% stenosis) presence of atherosclerosis in any major vascular bed
b. Atherothrombosis: acute coronary syndromes, cerebrovascular thrombosis
c. Previous or planned revascularization procedure (carotid, coronary, lower limb)

2. Major concomitant illness
a. Cardiac: cardiomyopathy/heart failure, significant valvular disease, previous cardiac surgery, (complex) congenital heart disease, heart

transplant
b. Organ failure: end-stage renal disease, hepatic insufficiency, previous organ transplant
c. Malignant tumors (recently diagnosed or currently treated, with <3 years tumor-free follow-up or tumors that are metastatic or initial

treatment was not curative)
d. Other conditions in which the screening physician expected a life expectancy <5 years

3. Diabetes mellitus
a. Diabetes mellitus type 1.
b. Diabetes mellitus type 2 if confirmed macrovasculopathy (see exclusion criterion 1) or significant renal impairment (see exclusion

criterion 2 b)
4. Specific conditions precluding accurate hemodynamic assessment

a. Continually irregular cardiac cycle: atrial fibrillation
b. State of hyperdynamic activity: pregnancy (in the preceding 6mo)

5. Inability to provide informed consent.
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were randomly split into three sets: a training set (80% of the
total data set), a validation set (10%), and a test set (10%).
Therefore, out of the entire cohort, 1,796 subjects were used
for the training, 223 data instances were used as validation for
the hyperparameter selection, and 237 subjects were kept
for the testing. To mitigate overfitting and to increase the
generalization capacity, the model should be trained for
optimal hyperparameter values. For the ANN, the batch size
(defines the number of samples that will be propagated
through the network) was set to be equal to 200, whereas
the number of epochs was optimized. The number of epochs
defines the number of times that the learning algorithm
works through the entire training data set. For selecting the
optimal value for epochs, we computed the training loss and
the validation loss for various values of epochs. Here, the
loss corresponds to the mean square error (MSE). Loss val-
ues were monitored by early stopping call back function.
When an increment is observed in the loss values, training

comes to halt and the respective value of epoch indicates
the optimal selection. All the yielded optimized hyperpara-
meters are aggregated in Table 3. Subsequently, the test set
was fed into the trained models to predict CT and the preci-
sion was evaluated.

The current study aimed to evaluate the importance of
each input feature for the CT prediction. The importance was
quantified by the use of the permutation feature importan-
ces (27). The concept of permutation feature importances
relies on measuring the importance of a feature by calculat-
ing the increase in the prediction error after permuting the
feature. The permutation importances were computed by
shuffling the values of each feature on the test set and by
estimating the RMSE after the permutation. This process
was repeated 20 times, and the mean and standard deviation
of the increase in RMSE were reported. Subsequently, an
additional ANN was trained/tested using the five most im-
portant features yielded by the aforementioned analysis.

Figure 1. Indication of features on the carotid
pressure waveform and the time derivative.

Table 2. Summary of all the ML models trained/tested based on their inputs

Model Inputs Input Vector Size

LR1 SBP, DBP, MAP, PP, PDN, tDN, Aupstroke, Asystolic, Adiastolic, dP/dtmax, tdP=dtmax
, HR, age, sex, height, weight 16

LR2 SBP, DBP, MAP, PP, PDN, tDN, Aupstroke, Asystolic, Adiastolic, dP/dtmax, tdP=dtmax
, HR, age, sex, height, weight, CO 17

ANN1 SBP, DBP, MAP, PP, PDN, tDN, Aupstroke, Asystolic, Adiastolic, dP/dtmax, tdP=dtmax
, HR, age, sex, height, weight 16

ANN2 SBP, DBP, MAP, PP, PDN, tDN, Aupstroke, Asystolic, Adiastolic, dP/dtmax, tdP=dtmax
, HR, age, sex, height, weight, CO 17

ANN3 Entire raw carotid pressure waveform, HR, age, sex, height, weight 105
ANN4 Entire raw carotid pressure waveform, HR 101
ANN5 PP, SBP, Adiastolic, Asystolic, weight (most important features) 5

Adiastolic, diastolic area; ANN, artificial neural network; CO, cardiac output; DBP, diastolic blood pressure; tDN, dicrotic notch time
point; HR, heart rate; LR, linear regression; MAP, mean arteral pressure; ML, machine learning; PDN, dicrotic notch pressure point; dP/
dtmax, peak of time derivative; PP, pulse pressure; SBP, systolic blood pressure; Asystolic, tdP=dtmax

, time point of peak derivative; total sys-
tolic area; Aupstroke, upstroke systolic area.
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The training/testing pipeline as well as the preanalyses and
postanalyses were implemented using the Scikit-learn
library (28) in a Python programming environment. The
Pandas and Numpy packages were also used (29, 30).

Sensitivity to Noise and Variations in the Wave
Morphology

We further evaluated the robustness of the method in the
case of measurement noise or variations in the morphology
of the wave. The evaluation was done following two con-
trolled experiments. First, errors were considered for the
extraction of the wave-based features for the ANN1 model.
Concretely, errors in features were simulated with a random
distribution. The error for each variable was randomly
drawn from the range of (�5, þ 5)%. Subsequently, each
variable value was multiplied with a noise factor; for
instance, for a randomly selected error of –4%, the respec-
tive variable value was multiplied with a noise factor
equal to 0.96. The process was repeated for the noise
ranges of ±7% and ±10%. Second, we wished to simulate
adverse effects for the ANN3 by distorting the shape of
the input pressure wave. This was achieved by adding
white Gaussian noise assuming three signal-to-noise ratio
(SNR) values, i.e., 40, 35, and 30dB. Selection of the SNR
values was done experimentally so that an obvious distor-
tion in the wave morphology is achieved that could render
the model incapable of making a correct prediction. A
lower SNR value would lead to an unrealistically signal
variation that would be inappropriate to use and thus
would be discarded. A higher SNR value would make it
easy for the model to yield a precise estimation.

Statistical Analysis

All data are presented asmeans ± SD. The statistical analy-
sis was performed in Python (Python Software Foundation,
Python Language Reference, v. 3.6.8, available at http://
www.python.org). The accuracy between the estimates and
the reference values was evaluated with the Pearson’s corre-
lation coefficient (r) and the normalized root mean square
error (nRMSE). Bias and limits of agreement (LoA) (where
95% of errors are expected to lie) were calculated using the
Bland–Altman analysis (31). The computed nRMSE was
based on the difference between the minimum and maxi-
mum values of the dependent variable y and was computed
as RMSE/(ymax � ymin). Level of statistical significance was
set equal to 0.05.

RESULTS

The population consisted of 1,087 (48%) male participants
and 1,169 (52%) female participants. The distributions of the

cardiovascular parameters of the study cohort (N = 2,256) are
presented in Table 4.

Comparison between the Model-Predicted and
Reference Data

The scatterplots and the Bland–Altman plots of the esti-
mated CT for each of the models against the ground truth
are shown in Figs. 2 and 3. Regressionmetrics for the agree-
ment, precision, and bias are aggregated in Table 5. The
regression slopes were similar for the LR1, ANN1, and
ANN3 in which the demographic data were considered as
inputs. Accuracy was significantly increased for the models
that used CO as an input feature (r � 0.94). Variability of
the absolute errors between predicted and actual compli-
ance values was low for the LR1, ANN1, and ANN3. In all
models, LoA were narrow and biases were reported to be
close to zero. Table 6 presents the feature importances of
the input regressors for CT, respectively. Among the inputs,
PP, SBP, and Adiastolic appeared to have the highest impor-
tance levels (error increase was more than 0.20mL/
mmHg). On the other hand, PDN and Aupstroke had the low-
est importance levels (error increased by 0.01mL/mmHg).
The ANN5 using only the five top-contributing features
had a satisfactory performance similar to the one of ANN1
that used all the extracted wave-based features and the per-
formance of ANN3 that was fed with the entire waveform
and the demographical data (nRMSE was found to be close
to 10% and correlation equal to 0.82).

Sensitivity to Noise and Variations in the Wave
Morphology

An input carotid pressure wave with the simulated artifi-
cial noise is illustrated in Fig. 4. The addition of artificial
noise affected the wave’s shape, harming the smoothness of

Table 4. Description of the cardiovascular characteris-
tics and parameters of the study cohort

Variable Value

N 2,256
Age, yr 45.91 ± 5.98
Height, cm 169.18 ± 8.82
Weight, kg 73.65 ± 14.45
Carotid SBP, mmHg 130.96 ± 10.90
Carotid DBP, mmHg 77.36 ± 16.83
Carotid PP, mmHg 53.59 ± 11.82
Mean arterial pressure, mmHg 99.60 ± 12.04
Cardiac output, L/min 4.95 ± 1.16
Heart rate, beats/min 60.35 ± 8.94
Total arterial compliance, mL/mmHg 1.00 ±0.32
Total peripheral resistance, mmHg·s/mL 1.27 ± 034
PDN, mmHg 110.38 ± 13.50
tDN, s 0.38 ±0.05
Aupstroke, mmHg·s 26.21 ± 7.00
Asystolic, mmHg·s 43.38 ± 8.03
Adiastolic, mmHg·s 58.58 ± 13.00
dP/dtmax, mmHg/s 657.07 ± 160.08
tdP=dtmax , s 0.068 ±0.014

Values are means ± SD; N, number of participants. Adiastolic, dia-
stolic area; DBP, diastolic blood pressure; PDN, dicrotic notch pres-
sure point; tDN, dicrotic notch time point; dP/dtmax, peak of time
derivative; PP, pulse pressure; SBP, systolic blood pressure;
tdP=dtmax

, time point of peak derivative; Asystolic, total systolic area;
Aupstroke, upstroke systolic area.

Table 3. Optimal number of epochs for each ANN

CT Models Epochs

ANN1 118
ANN2 380
ANN3 187
ANN4 212
ANN5 101

ANN, artificial neural network; CT, total arterial compliance.
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the curve and leading to variations in the peaks. We can
observe that for an SNR = 20 dB (Fig. 4C), it begins to become
difficult to clearly distinguish the shape. As anticipated, the
agreement and correlation between the estimated CT and the
reference CT decreased with the increase in the noise level.
Table 7 reports the correlation coefficients and normalized
RMSE values as a function of the noise levels for the two
simulated experimental settings.

DISCUSSION

This article introduces a novel ML method for estimating
CT. The findings indicated that arterial compliance can be
accurately predicted by exploiting the carotid blood pressure
waveform. This method relies on the raw information hid-
den in the carotid pulse wave that can be unveiled via the so-
phisticated ML capacity. In addition, the present study
introduces an ANN estimator that is based on features
extracted from the carotid wave. These features appeared to
be powerful predictors of CT. The major advantage of a
method for estimating CT from a single carotid pressure wave-
form is that it eliminates the need for a flow or velocity record-
ing that requires complex and expensive echocardiographic or
magnetic resonance imaging procedures. Consequently, it pro-
vides a faster andmore convenient way for monitoring arterial
compliance.

The CT together with the total vascular resistance are the
two major parameters that describe the global biomechani-
cal properties of the arterial system. Modeling vasculature
and hemodynamical responses often require the estimation
of CT, whereas other methods for minimally invasive cardiac

output monitoring (namely, pulse contour analysis) are also
dependent on CT values (32). Yet, despite the additional clin-
ical utility of CT, current techniques for CT have not entered
the everyday clinical practice. This ismainly attributed to in-
herent limitations, including methodological complexity
and expensiveness.

Moreover, the lack of a common basis and guidelines has
hampered the establishment of CT as an outcome predictor.
However, several studies have demonstrated that assess-
ment of CT is valuable for not only cardiovascular risk evalu-
ation but also assessment of the relationship between
structural and functional changes in the vascular system
with respect to its elasticity [14, 33]. Moreover, Haluska et al.
(9) stressed that derivation of CT adds incremental benefit to
Framingham risk scores in patients with intermediate cardi-
ovascular risk. Hence, CT is becoming a valuable parameter
in the clinical setting by providing additive value in conjunc-
tion with other vascular characteristics (12) or by acting as a
superior predictor over current traditional techniques (9).
The suggestedmethod could potentially facilitate the further
elucidation of the clinical utility of CT as a risk predictor.

The current study trained and tested two ML models of
different nature, namely, a typical linear regressor and an ar-
tificial neural network. There was no significant variability
in the errors among the two models for the feature-based
configurations, i.e., LR1 and ANN1 [LoA were (�0.35, 0.35)
and (�0.33, 0.34) mL/mmHg]. However, the LR1 could not
account for the nonlinear relationships between the inputs
and the compliance, and this led to curvilinearity in the
results’ plots. Importantly, there is much additive value
offered by the ANN estimator that has been proven capable

Figure 2. Comparison between pre-
dicted and reference data. Scatterplot
and Bland–Altman plot between the pre-
dicted CT and the reference CT for LR1
(A) and LR2 (B). The solid line of the scat-
terplots represents equality. In Bland–
Altman plots, limits of agreement (LoA) are
defined by the two horizontal dashed lines.
CT, total arterial compliance; LR, linear
regression.
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of accurately predicting CT from the raw blood pressure
waveform. This approach could introduce a greatly promis-
ing method for the medical community by reducing the
cost and the complexity in assessing CT. Moreover, as

anticipated, the inclusion of CO in the input vector essen-
tially increased the precision of the results. Compliance is a
measure of volume change against unit pressure change.
Hence, the two parameters are highly interdependent. The

Figure 3. Comparison between pre-
dicted and reference data. Scatterplot
and Bland–Altman plot between the pre-
dicted CT and the reference CT for ANN1
(A), ANN2 (B), ANN3 (C), and ANN4 (D).
The solid line of the scatterplots repre-
sents equality. In Bland–Altman plots,
limits of agreement (LoA) are defined by
the two horizontal dashed lines. ANN, ar-
tificial neural network; CT, total arterial
compliance.
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dependency in conjunction to the blood pressure informa-
tion allows for computing one from the other. This is a prin-
ciple applied by several existing methods. In addition,
providing that the PPM (used to derive the reference CT) uses
the aortic flow for the CT calculation, introducing the aortic
flow information to the ML model would inarguably reduce
the error. Nevertheless, our study’s objective is to provide
estimates of CT without the need for the aortic flow or veloc-
ity recording (and thus CO).

It is of importance to recognize the contribution of each
input to the prediction of CT. The PP was found to have
the highest influence on the prediction error, namely,
0.31±0.04mL/mmHg for CT values within a range of 0.3–
2.1mL/mmHg. This is highly anticipated given that PP is
essentially determined by the elastic properties of the aorta
(34). Due to the topological proximity of the carotid artery to
the aorta, the carotid PP constitutes a fair surrogate of the
aortic PP. Hence, the strong interdependence between the
PP and CT is also in effect for the carotid pressure. Moreover,
one should not ignore the fact that the PPM, which was
applied for acquiring the compliance values, relies on an
iterative process that yields the CT with the best fit in terms
of PP. The SBP also appeared to impact the accuracy of the
estimation by an error increase of 0.28±0.02mL/mmHg.
The PP and SBP were followed by Adiastolic and Asystolic. The
combination of the latter yields the entire area under the
curve whose measurement is involved in the arterial pulse
contour analysis for CO estimation (32); knowledge of MAP
and a notion of CO allows for approximating arterial compli-
ance. Moreover, the substantial contribution of the Adiastolic

may be attributed to its association to the decay time con-
stant (s = RCT) whose concept is used by the AM for estimat-
ing compliance. The demographic information, and in
particular weight, had a high importance level for the CT esti-
mator. This was also observed from the reduced precision of
the predictive model that excluded the individual’s demo-
graphic data from the input vector (ANN4) where the corre-
lation was decreased to 0.77. Arterial compliance has been
shown to be highly dependent on arterial geometry that is
determined by the body size, and thus weight and height.
When only the most important features were used in ANN5
(permutation importance higher than 0.1mL/mmHg), the
accuracy remained similarly high as one of the ANNs that
used either all the extracted features (ANN1) or all the wave
points (ANN3). Therefore, it should not be necessary to use a
higher number of input features for the CT predictive mod-
els. Finally, the lower importance levels of some inputs
might be explained by the fact that the information embed-
ded in their values may be contained already in other inputs
with higher importance levels.

Estimation of cfPWV using the proposed methodology
would yield a correlation equal to 0.6 between the estimated
and the reference values (data not shown). It is likely that
the lower correlation is attributed to the fact that the method
uses as input a waveform from a single arterial site, whereas
measurement of the foot-to-foot cfPWV requires waves from
two arterial locations. Nevertheless, cfPWV can be measured
in an easy and noninvasive way with satisfactory reproduci-
bility, and hence, further simplification of its acquisition
would not add tremendously to the current state of the art.
In contrast, fast, convenient, and cost-efficient determina-
tion of CT is still missing.

In this study, we chose to use a single carotid pressure
waveform for estimating arterial compliance. The rationale
behind the use of a single wave relies on the current function
of the existing devices. The current commercial devices (e.g.,
SphygmoCor) collect multiple recordings of the pressure
wave for a specific time window and then yield an average
blood pressure wave for the subject under consideration.
Ideally, our algorithm could be embedded into such a device
and provide the additional approximation of arterial compli-
ance. In such a setting, a single carotid waveform would be
sufficient. However, as variations may occur across several
beats of measurement, it is possible that the CT prediction is
influenced. Yet, the sensitivity analysis demonstrated that
small alterations in the wave’s morphology due to noise do
not affect significantly the predictions for an SNR equal to

Table 5. Regression statistics between model-predicted and reference CT data

Model Slope Intercept, mL/mmHg r P Value nRMSE, % Bias (LoA), mL/mmHg Predicted CT, mL/mmHg

LR1 0.71 0.29 0.81 <0.0001 10.63 �0.00 (�0.35,0.35) 0.98 ±0.28
LR2 0.93 0.07 0.93 <0.0001 6.13 0.01 (�0.21,0.22) 0.99 ±0.3
ANN1 0.77 0.24 0.83 <0.0001 9.58 0.01 (�0.33, 0.34) 0.99 ±0.28
ANN2 0.97 0.05 0.96 <0.0001 4.8 0.01 (�0.15, 0.18) 1 ± 0.3
ANN3 0.73 0.28 0.83 <0.0001 9.67 0.02 (�0.32, 0.36) 1 ± 0.27
ANN4 0.68 0.28 0.77 <0.0001 11.26 �0.04 (�0.43, 0.35) 0.94 ±0.27
ANN5 0.74 0.26 0.82 <0.0001 9.9 0.01 (�0.34, 0.36) 0.99 ±0.27

ANN, artificial neural network; CT, total arterial compliance; LoA, limits of agreement; LR, linear regression; nRMSE, normalized root
mean square error; r, Pearson’s correlation coefficient. Two-sided P value for a hypothesis test whose null hypothesis is that the slope is
zero, using Wald test with t distribution of the test statistic.

Table 6. Permutation feature importances for the ANN1

Feature þ dRMSE, mL/mmHg Feature þ dRMSE, mL/mmHg

PP 0.31 ± 0.04 PDN 0.04 ±0.01
SBP 0.28 ±0.02 MAP 0.03 ±0.01
Adiastolic 0.24 ±0.02 dP/dtmax 0.02 ±0.00
Asystolic 0.14 ± 0.02 HR 0.02 ±0.01
Weight 0.11 ± 0.01 tdP=dtmax

0.02 ±0.01
DBP 0.07 ±0.01 Age 0.02 ±0.00
Height 0.05 ±0.01 tDN 0.01 ± 0.00
Sex 0.04 ±0.01 Aupstroke 0.01 ± 0.01

ANN, artificial neural network; Adiastolic, diastolic area; DBP, dia-
stolic blood pressure; PDN, dicrotic notch pressure point; tDN, di-
crotic notch time point; HR, heart rate; MAP, mean arterial
pressure; dP/dtmax, peak of time derivative; PP, pulse pressure;
RMSE, root mean square error; SBP, systolic blood pressure;
tdP=dtmax

, time point of peak derivative; Asystolic, total systolic area;
Aupstroke, upstroke systolic area.
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40dB. Validation of the methodology using multiple beats of
carotid pressure remains to be conducted to quantify the
effect of such variations in vivo.

The BP waveform has been shown to be crucial for assess-
ing the vascular state in the human. It provides outstanding
information on central hemodynamics, microcirculation
and macrocirculation cross talk, and arterial stiffness (2–4,
35, 36). Moreover, signal processing techniques are rapidly
advancing allowing for creating a gold mine of physiological
information hidden in pressure blood waveform. In this
study, we evaluated the performance of ML models on

revealing the hidden information related to arterial compli-
ance in commonly used pressure wave features. Furthermore,
we tested the unveiling capacity of an ANN that was fed with
the raw pressure signal and received no guidance regarding
the input features to use for the training/testing process.
Interestingly, the algorithm performed very satisfactorily
when the raw carotid waveform was prescribed to the ANN
input layer. These findings indicate the beginning of a new
era where theML algorithms are capable of revealingmore so-
phisticated pieces of vascular information through learning
by itself from the available clinical data.

Undoubtedly, noninvasive health monitoring technology
is on the frontiers of modern healthcare, and it is bound to
expand inside and beyond the clinical environment.
Concurrently, the rapid advance of wearable technologies is
transforming the healthcare system on a global scale. Blood
pressure sensing devices aim to be essentially miniaturized,
whereas their function will be highly assisted by pressure
wave analysis techniques. In this context, reducing the
required measurements to only a single waveform in con-
junction with the greatly promising potential of signal proc-
essing techniques creates a unique opportunity for future
use in the market. In addition, medical consultation is
expected to become available remotely at all times by con-
necting to the data cloud where specialized clinicians will be
interpreting the available parameters.

Limitations

A main limitation of this study is that the values for CT,
which were used as the ground truth, were derived using
the PPM. Unarguably, this value does not correspond to the
actual arterial compliance. Nonetheless, acquisition of the
real arterial compliance would not be feasible in an intact or-
ganism. In addition, the PPM has been shown to provide reli-
able compliance estimations and, therefore, it constitutes a
trustworthy alternative for validating our method (14, 15, 23).
Another limitation is that the study population included
individuals free of cardiovascular disease or pathology. It is
not guaranteed that the developed models will be capable of
making predictions for patients with, for instance, aortic
valve stenosis, arrhythmias, or other pathologies. Future
work is needed to validate the proposed methodological
framework using such populations. Finally, it is well estab-
lished that healthy aging and cardiovascular diseases, such

Figure 4. Carotid blood pressure waves after adding artificial noise,
assuming SNR = 40 dB (A), SNR = 35 dB (B), and SNR = 30 dB (C). The
noisy data are presented in red solid lines and the original noise-free data
in black dashed lines.

Table 7. Correlation coefficients and nRMSE values as a
function of the artificial noise level in the distorted ca-
rotid pressure waves for the ANN1 and ANN3 models

Model r nRMSE, %

ANN1
Noise level, %
±5 0.79 10.73
±7 0.78 11.11
±10 0.71 13.51

ANN3
SNR, dB
40 0.8 10.34
35 0.79 10.76
30 0.75 12.36

ANN, artificial neural network; nRMSE, normalized root mean
square error; SNR, signal-to-noise ratio.
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as hypertension and heart failure, are associated with
increased arterial stiffness (37, 38). Therefore, a method that
is capable of differentiating between healthy and disease is
highly desirable. At this initial stage, we demonstrated that
accurate estimations of CT can be yielded using our ML-
based approach. Given that CT has been found to be capable
of differentiating between hypertensive, elderly and healthy
individuals (10–12), as a next step, we envision to evaluate
the robustness of the proposed method for classifying high-
risk populations and finally verify its clinical significance in
terms of risk stratification.

Conclusions

This article introduces a novel artificial intelligence
method to estimate CT. The method relies on exploiting the
information provided by the carotid blood pressure wave-
form as well as typical clinical variables (such as demograph-
ical data). Our results demonstrated that accurate estimates
of CT can be obtained following our methodology. The im-
portance of the method is based on the simplification of the
technique offering easily applicable and convenient moni-
toring of CT. Such an approach could provide promising
applications that may be integrated in wearable technologies
and smartphones. Finally, the study further supports the im-
portance of arterial pulse waves in the assessment of cardio-
vascular health and suggests the potentiality of ML in
advancing the detection of clinical biomarkers inmedicine.
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